• Title/Summary/Keyword: Boost-input

Search Result 567, Processing Time 0.028 seconds

Design of Micro Energy Harvesting System using Thermoplastic Polyurethane and Buck-boost Converter (열가소성 폴리우레탄과 벅-부스트 컨버터를 이용한 마이크로 에너지 포집시스템 설계)

  • Son, Young-Dae;Kim, Gue-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.560-565
    • /
    • 2011
  • This paper proposes the design of micro energy harvesting system by using thermoplastic polyurethane(TPU), which harvests electric energy from the kinetic energy of pedestrian and drives the desired load, and applied it to the self-generating shoes. Also, we designed the buck-boost converter in discontinuous conduction mode(DCM) which functions as a resistor emulator(RE) such that converter's average input current is proportional to input voltage, and it results in transfer of maximum power to buck-boost converter according to control behavior that converter's input resistance is matched with TPU's internal resistance. Therefore, this paper confirms the validity of proposed control scheme and possibility of application for self-generating shoes, from the obtained characteristic of designed micro energy harvesting system by using a TPU and buck-boost converter in DCM.

Input-Constrained Current Controller for DC/DC Boost Converter

  • Choi, Woo Jin;Kim, Seok-Kyoon;Kim, Juyong;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2016-2023
    • /
    • 2016
  • This paper presents a simple input-constrained current controller for a DC/DC boost converter with stability analysis that considers the nonlinearity of the converter model. The proposed controller is designed to satisfy the inherent input constraints of the converter under a physically reasonable assumption, which is the first contribution of this paper. The second contribution is providing a rigorous proof of the proposed control law, which keeps the closed-loop system along with the internal dynamics stable. The performance of the proposed controller is demonstrated through an experiment employing a 20-kW DC/DC boost converter.

A New Interleaved Double-Input Three-Level Boost Converter

  • Chen, Jianfei;Hou, Shiying;Sun, Tao;Deng, Fujin;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.925-935
    • /
    • 2016
  • This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved. The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies.

High-powerfactor Control of Boost-type Rectifier without input Current Sensing (입력전류의 검출이 없는 승압형 정류기의 고역률제어)

  • Bae, Chang-Han;Lee, Gyo-Beom;Song, Jung-Ho;Lee, Gwang-Un
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.510-516
    • /
    • 1999
  • In this paper, a new high-powerfactor control method for boost-type rectifier is proposed, which removes the necessity of input current sensing. This method generates a sinewave duty template only from the line voltage waveform and rectifier output, and reduces reactive power remarkably utilizing three compensation coefficients which are determined through experiments. These compensations make the input current to be in phase with the input voltage all over the load range. A prototype boost-type rectifier is designed and experimental results are presented.

  • PDF

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

A Study on Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (Voltage Sag 보상을 위한 승압형 단상 인버터 시스템에 관한 연구)

  • Seo, Young-Min;Lee, Seung-Yong;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.50-57
    • /
    • 2011
  • This paper proposes a boost type single-phase inverter system to compensate the voltage sag appeared on source side. The proposed system is composed of a boost converter, a PWM inverter, and a bypass diode. If the voltage sag has appeared in input voltage, the boost converter would be operated to compensate it in the proposed system. The boost converter would not be operated when the magnitude of input voltage is more than 0.9 pu. The output voltage is kept constant by a direct-quadrature frame controller in the inverter. A 300 W class boost type inverter system was simulated, and the validity of the proposed system was verified by carrying out experiments.

Start-up Voltage Generator for 250mV Input Boost Converters (250mV 입력 부스트 컨버터를 위한 스타트업 전압 발생기)

  • Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1155-1161
    • /
    • 2014
  • This paper proposes a start-up voltage generator for reducing the minimum input supply voltage of DC-DC boost converters to 250mV. The proposed start-up voltage generator boosts 250mV input voltage to over 500mV to charge the capacitor for starting the boost converter. After the boost converter operates initially with the supply voltage charged in the capacitor, it uses its boosted output voltage for the supply voltage. Therefore, after the start-up operation, the proposed DC-DC boost converter works as the same as the conventional one. The proposed start-up voltage generator reduces the threshold voltage of the transistors by adjusting the body voltage at a low input voltage. This causes the higher clock frequency and the larger current to a Dickson charge-pump for boosting the input voltage. The proposed start-up voltage generator was implemented with a $0.18{\mu}m$ CMOS process. Its clock frequency and output voltage were 34.5kHz and 522mV at 250mV input voltage, respectively.

Input Ripple Current Formula Analysis of Multi-Stage Interleaved Boost Converter (다단 인터리브드 부스트 컨버터의 입력리플전류 수식 분석)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.865-871
    • /
    • 2011
  • DC-DC converter commonly used in photovoltaic systems or fuel cell systems is a boost converter. Among several types of boost converter, the interleaved boost converter with small input and output current ripples is widely used in recent years. Because of small input and output current ripples, the circuit can reduce the size of the input and output capacitors. Thus, instead of conventional electrolytic capacitor, the film capacitor with high reliability can be used and this is the life and reliability of the entire system can be improved. In this paper, the input/output current ripple formulas of the multi-stage interleaved boost converter are derived, and the characteristics in accordance with duty are found out. In order to verify the above mentioned contents, the derived results will make a comparison with the calculated values by using PSIM tool.

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.