• Title/Summary/Keyword: Bone screw

Search Result 437, Processing Time 0.023 seconds

Early histological change in hard tissue from orthodontic force placed on microscrews in ovariectomized rats (난소 적출 백서에 식립된 마이크로스크류에 교정력 부여 시 나타난 초기 경조직 변화에 관한 연구)

  • Lee, Dea-Seung;Chang, Moon-Jung;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.103-113
    • /
    • 2006
  • Most elderly women experience a decrease in their bone density due to a deficiency of calcium intake, ovariectomy, or menopause. This study evaluated the usability of the microscrew as a skeletal anchorage system in these orthodontic treatment cases, using rats as a research group. The 4 month old sprague-dawley species rats were divided into two groups, the OS (Ovariectomy Screw), and the SS (Sham operation Screw) group. In both the OS and SS groups, microscrews were implanted into the palatal bone between the upper molar teeth and two upper incisors were retracted using NETE coil spring with 75 g of force. After 3days, the again after 7 days, 7 rats in each group were sacrificed. Three days before they were sacrificed, Alizarin red S was intraperitoneally injected, and their maxillary bone, tibia and blood from their hearts were taken. The components of the extracted blood were biochemically analyzed and non-decalcified grinding resin sections for maxillary bone and tibia were made. The sections were examined with a polarization microscope, and fluorescent microscope. Smaller concentrations of Ca and P, the inorganic substances closely related to bone density, were found in the extracted blood of the OS group. Both OS and SS groups showed a possibility of bone remodeling with a high concentration of ALP after 7 days. An increase in bone density on the tension and compression sides of the microscrew and the tension side of the tooth for both OS and SS groups was confirmed with a polarization microscope. However, the bone density of the pressure side of the tooth and apical side was decreased. More deposits of Alizarin red S in the bone after 7 days rather than 3 days seen with a fluorescent microscope suggested the existence of new bone formation.

Targeting a Safe Entry Point for C2 Pedicle Screw Fixation in Patients with Atlantoaxial Instability

  • Chun, Hyoung-Joon;Bak, Koang-Hum
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.6
    • /
    • pp.351-354
    • /
    • 2011
  • Objective : This investigation was conducted to evaluate a new, safe entry point for the C2 pedicle screw, determined using the anatomical landmarks of the C2 lateral mass, the lamina, and the isthmus of the pars interarticularis. Methods : Fifteen patients underwent bilateral C1 lateral mass-C2 pedicle screw fixation, combined with posterior wiring. The C2 pedicle screw was inserted at the entry point determined using the following method : 4 mm lateral to and 4 mm inferior to the transitional point (from the superior end line of the lamina to the isthmus of the pars interarticularis). After a small hole was made with a high-speed drill, the taper was inserted with a 30 degree convergence in the cephalad direction. Other surgical procedures were performed according to Harm's description. Preoperatively, careful evaluation was performed with a cervical X-ray for C1-C2 alignment, magnetic resonance imaging for spinal cord and ligamentous structures, and a contrast-enhanced 3-dimensional computed tomogram (3-D CT) for bony anatomy and the course of the vertebral artery. A 3-D CT was checked postoperatively to evaluate screw placement Results : Bone fusion was achieved in all 15 patients (100%) without screw violation into the spinal canal, vertebral artery injury, or hardware failure. Occipital neuralgia developed in one patient, but this subsided after a C2 ganglion block. Conclusion : C2 transpedicular screw fixation can be easily and safely performed using the entry point of the present study. However, careful preoperative radiographic evaluation, regardless of methods, is mandatory.

THE EXPERIMENTAL STUDY ON BONE HEALING AROUND TITANIUM IMPLANTS PLACED IN IRRADIATED RAT'S TIBIAE (방사선 조사 백서 경골에 티타늄 임플랜트 매식후 골 치유에 관한 연구)

  • Kwak, Byung-Hak;Kim, Jong-Ryoul;Park, Bong-Soo;Shin, Sang-Hoon;Sung, Iel-Yong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.6
    • /
    • pp.379-391
    • /
    • 2003
  • The present study was undertaken to evaluate bone regenerative capacity around titanium screw implants placed in irradiated rat's tibiae. At one week after single 15-Gy dose irradiation, miniaturized titanium screw implants were inserted into anterior aspect of the upper tibia of rats weighing 200-250g. Seventy rats were involved: 35 rats were control and 35 rats radiation group. The rats were killed at different intervals as 1, 2, 3, 4, 6, 8, 12 weeks after implantation for histologic observation, histomorphometric analysis and immunohistochemical study with fibronectin and CD34 antibody. 1. Histologically, various stages of bone maturation and ossification can be seen at 4 weeks and regenerated bone close to edges demonstrates more advanced calcification, and network of new bone are well formed at 12 weeks in non-irradiated group. In contrast, active bone formation with increased contact of newly formed bone to implant surface was noted at 4 weeks and a significant amount of new bone formation and bone-implant contact is oberved at 12 weeks in irradiated group. 2. Histomorphometrical analysis confirmed these histologic findings. A significant difference in implant-bone contact and bone density was measured between the control and radiation group. Mean MBD was 62.2% in control group and 27.5% in radiation group, mean MBIC was 86.6% in control group and 47.7% in radiation group, and mean TBIC was 87.3% in control group and 45.6% in radiation group at 12 weeks after implantation. 3. In immunohistochemical study with fibronectin and CD34, radiation reduced hematopoietic progenitor cells severely and disturbed differentiation of osteoblast in bone marrow. The results of this study revealed bone healing capacity around implant after radiation therapy was severely impaired and irradiation reduces the capacity for osseointegration of titanium implants. Many factors including radiation dose, period between radiation and implantation, bone quality, time elapse between first and second surgery, type of prosthetics and hyperbaric oxygen therapy must be considered carefully in postradiation implantation.

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Guided Bone Regeneration in Comminuted Long-Bone Fractures Using Recombinant Human Bone Morphogenetic Protein-2 and a Collagen Membrane

  • Jang, Kwangsik;Jo, Hyun Min;Shim, Kyung Mi;Kim, Se Eun;Kang, Seong Soo
    • Journal of Veterinary Clinics
    • /
    • v.39 no.2
    • /
    • pp.59-64
    • /
    • 2022
  • A dog aged two years and seven months and a cat aged seven years were referred owing to fractures of long bones. Preoperative radiographs revealed comminuted bone fractures close to joints. Conventionally, long-bone fractures are treated using intramedullary pins, plate and screw systems, or an external fixator system. In cases of non-reducible fractures, various graft materials have been used in fracture treatments to stimulate bone repair. Here, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a collagen membrane were applied. Four weeks after surgery, fractured bone fragments began to unite and the bone union was observed using radiography four months after surgery. No complications occurred related to grafted materials. We successfully applied rhBMP-2 and collagen membranes in two different species to support the healing process of comminuted fractures, according to the concept of guided bone regeneration.

Comparison of insertion torque regarding changes in shape, diameter, and length of orthodontic miniscrews (교정용 미니스크류의 형상에 따른 식립 토오크의 비교)

  • Lim, Seon-A;Cha, Jung-Yul;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.89-97
    • /
    • 2007
  • Objective: The purpose of this study was to measure the insertion torque of orthodontic miniscrews regarding changes in their shape, diameter, and length. Methods: Torque values were measured during continuous insertion of the miniscrews into solid rigid polyurethane foam, using a torque tester of driving motor type with a regular speed of 3 rpm. Orthodontic miniscrews (Biomaterials Korea, Seoul, Korea) of cylindrical type and taper type were used. Results: Increasing the length and diameter of the miniscrews increased the maximum insertion torque value in both cylindrical and taper type screws. Insertion torque was increased at the incomplete head of the cylindrical type screw, and at the tapered part of the taper type screw. The insertion torque value of miniscrews was influenced most by diameter, then shape and length. As a result, it was shown that the diameter of the screw had the most influence on insertion torque, and the taper type screw had a higher torque value than the cylindrical type screw. Conclusion: Therefore, a large diameter or taper type screw are adequate for areas of thin cortical bone with a large interdental space, and a small diameter or cylindrical type screw are adequate in the mandibular molar area or the midpalatal area having thick cortical bone.

Additional fixation using a metal plate with bioresorbable screws and wires for robinson type 2B clavicle fracture

  • Shin, Woo Jin;Chung, Young Woo;Kim, Seon Do;An, Ki-Yong
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.4
    • /
    • pp.198-202
    • /
    • 2020
  • Simple clavicle fractures can achieve satisfactory results through conservative treatment, and the less frequency of nonunion. Non-union or malunion can occur in displaced clavicle fractures or comminuted shaft fractures. Treatment of displaced comminuted clavicle shaft fractures is performed by holding together the free fragments with interfragmentary screws or wires and fixing them to the clavicle with a plate. Therefore, we performed interfragmentary fixation using open reduction and internal fixation with bioresorbable screws (Mg-Ca alloy, Resomet bioresorbable bone screw; U&I Corp.) and bioresorbable wires (Mg-Ca alloy, Resomet bioresorbable K-wire and pin, U&I Corp.) for displaced comminuted clavicle fractures (Robinson type 2B) and additionally used a metal plate. We expected decreased irritation and infection due to absorption after surgery. We report four cases that were treated in this way.

Load Sharing Mechanism Across Graft-Bone Interface in Static Cervical Locking Plate Fixation

  • Han, In-Ho;Kuh, Sung-Uk;Chin, Dong-Kyu;Jin, Byung-Ho;Cho, Yang-Eun;Kim, Keun-Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Objective : This study is a retrospective clinical study over more than 4 years of follow up to understand the mechanism of load sharing across the graft-bone interface in the static locking plate (SLP) fixation compared with non-locking plate (NLP). Methods : Orion locking plates and Top non-locking plates were used for SLP fixation in 29 patients and NLP fixation in 24 patients, respectively. Successful interbody fusion was estimated by dynamic X-ray films. The checking parameters were as follows : screw angle (SA) between upper and lower screw, anterior and posterior height of fusion segment between upper and lower endplate (AH & PH), and upper and lower distance from vertebral endplate to the end of plate (UD & LD). Each follow-up value of AH and PH were compared to initial values. Contributions of upper and lower collapse to whole segment collapse were estimated. Results : Successful intervertebral bone fusion rate was 100% in the SLP group and 92% in the NLP group. The follow-up mean value of SA in SLP group was not significantly changed compared with initial value, but follow-up mean value of SA in NLP group decreased more than those in SLP group (p=0.0067). Statistical analysis did not show a significant difference in the change in AH and PH between SLP and NLP groups (p>0.05). Follow-up AH of NLP group showed more collapse than PH of same group (p=0.04). The upper portion of the vertebral body collapsed more than the lower portion in the SLP fixation (p=0.00058). Conclusion : The fused segments with SLP had successful bone fusion without change in initial screw angle, which was not observed in NLP fixation. It suggests that there was enough load sharing across bone-graft interface in SLP fixation.

FINITE ELEMENT APPROACH TO INVESTIGATE THE INFLUENCE OF THE DESIGN CONFIGURATION OF THE ITI SOLID IMPLANT ON THE BONE STRESSES DURING THE OSSEOINTEGRATION PROCESS (유한요소해석을 통한 ITI Solid screw 임플랜트의 형상 특성이 골유착 단계에서 응력에 미치는 영향에 대한 연구)

  • Cha Sang-Bum;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.217-228
    • /
    • 2006
  • Statement of problem: Standard type of ITI solid implant model in the 6.2mm thick jaw bone was axisymmetrically modelled for finite element stress analyses. Purpose: Primary objective was to investigate the influences or the characteristic design configuration of the ITI solid implant model on the bone stress with the course of osseointegration process at the bone/implant interfaces. To simulate the characteristics of the osseointegration process, five different stages of the bone/implant interface model were implemented. As load conditions, vertical load of 50N was taken into consideration. Bone at the cervical region of implant was the areas of concern where the higher level of stress were likely to take place. Results: The results indicated that rather slightly different stress level could be obtained as a function of the osseointegration conditions. Conclusion: Under vertical load, the lower level of stress was observed at the cervical cortical bone in the initial and final stages of osseointegration. Relatively higher stress level, however, was observed during the transitional stages where the osseointegration at the cancellous bone interface were yet to fully develop.

Estimation of Lower Jaw Density using CT data

  • Jargalsaikhan, Ariunbold;Sengee, Nyamlkhagva;Telue, Berekjan;Ochirkhvv, Sambuu
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • Bone density is one of the factors in the early failure of dental implants and doctors should make a preoperative assessment of jaw bone density using patient's CT data before dental implant surgery in order to find out whether the patient has osteoporosis and osteopenia. The main goal of this study was to propose a method that based on image processing techniques in order to provide accurate information about where to drill and place an abutment screw of implants in the jaw bone for doctors and reduce human activity for the estimation of the local cancellous bone density of mandible using CT data. The experiment was performed on a computed tomography data of the jaw bone of two different individuals. We assumed that the result of the estimation of jaw bone density depends on the angle of drilling and average HU (Hounsfield Unit) values were used to evaluate the quality of local cancellous bone density of mandible. As a result of this study, we have been developed a toolbox that can be used to estimate jaw bone density automatically and found a positive correlation between the angle of the drill and time complexity but a negative correlation between the diameter of the drill and time complexity.