교정용 미니스크류의 형상에 따른 식립 토오크의 비교

Comparison of insertion torque regarding changes in shape, diameter, and length of orthodontic miniscrews

  • 임선아 (연세대학교 치과대학 교정학교실) ;
  • 차정열 (연세대학교 치과대학 교정학교실) ;
  • 황충주 (연세대학교 치과대학 교정학교실, 두개안면기형 연구소, 구강과학연구소)
  • Lim, Seon-A (Department of Orthodontics, School of Dentistry, Yonsei University) ;
  • Cha, Jung-Yul (Department of Orthodontics, School of Dentistry, Yonsei University) ;
  • Hwang, Chung-Ju (Department of Orthodontics, School of Dentistry, Dental Science Research Institute, Yonsei University)
  • 발행 : 2007.04.30

초록

교정용 스크류의 적절한 식립 토오크는 스크류와 골과의 경계에 적절히 작용하여 실패를 최소화 할 수 있는데, 너무 낮은 식립 토오크는 안정성이 없으며 반면에 너무 강한 식립 토오크는 열, 기계적 손상으로 골 괴사를 야기할 수도 있다. 본 연구에는 임상적으로 스크류의 길이와 직경 및 형태 등을 달리하여 식립 토오크를 측정해서 스크류의 각 부분에 대한 세분화된 토오크의 변화를 분석하고자 하였다. 연구결과 1.5 mm 두께의 인공피질골 블록에서 cylindrical type 스크류와 taper type 스크류 두 형태 모두에서 스크류 길이가 길수록 최대 식립 토오크 값도 함께 증가하였다. 특히 cylindrical type 스크류에서 길이에 따른 토오크 변화에 대해 통계적으로 유의한 차이가 관찰되었다 (p<0.05). 미니스크류의 연속적인 식립 토오크 분석 결과 cylindrical type 스크류는 연속적인 그래프 형태를 보이면서 불완전 나사부에서 식립 토오크가 크게 증가하였으며, taper type 스크류는 나사선의 마지막 경사진 부분에서 식립 토오크가 크게 증가하였다. 외경이 커질수록 최대 식립 토오크 값은 증가하였는데, 통계적으로 유의한 차이를 보였다 (p<0.05). 형태와 외경, 길이는 모두 토오크 값에 유의한 영향을 미치는데, 식립 토오크에 가장 큰 영향을 미치는 것은 외경, 형태, 길이 순서였다. 본 연구 결과 스크류의 식립 토오크에 가장 큰 영향을 미치는 것은 스크류의 외경이며 각각의 해부학적 구조물에 대한 피질골의 두께를 고려하여 적합한 스크류의 두께 및 나사산의 형태를 선택하는 것이 스크류의 초기 고정력을 얻는데 유리하다고 판단된다.

Objective: The purpose of this study was to measure the insertion torque of orthodontic miniscrews regarding changes in their shape, diameter, and length. Methods: Torque values were measured during continuous insertion of the miniscrews into solid rigid polyurethane foam, using a torque tester of driving motor type with a regular speed of 3 rpm. Orthodontic miniscrews (Biomaterials Korea, Seoul, Korea) of cylindrical type and taper type were used. Results: Increasing the length and diameter of the miniscrews increased the maximum insertion torque value in both cylindrical and taper type screws. Insertion torque was increased at the incomplete head of the cylindrical type screw, and at the tapered part of the taper type screw. The insertion torque value of miniscrews was influenced most by diameter, then shape and length. As a result, it was shown that the diameter of the screw had the most influence on insertion torque, and the taper type screw had a higher torque value than the cylindrical type screw. Conclusion: Therefore, a large diameter or taper type screw are adequate for areas of thin cortical bone with a large interdental space, and a small diameter or cylindrical type screw are adequate in the mandibular molar area or the midpalatal area having thick cortical bone.

키워드

참고문헌

  1. Wehrbein H, Merz BR, Diedrich P, Glatzmaier J. The use of palatal implants for orthodontic anchorage: Design and clinical application of the orthosystem. Clin Oral Implants Res 1996;7:410-6 https://doi.org/10.1034/j.1600-0501.1996.070416.x
  2. Melsen B, Petersen JK, Costa A. Zygoma ligatures: an alternative form of maxillary anchorage. J Clin Orthod 1998;32:154-8
  3. Umemori M, Sugawara J, Mitani H, Nagasaka H, Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 1999; 115: 166-74 https://doi.org/10.1016/S0889-5406(99)70345-8
  4. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31 :763-7
  5. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg 1998;13:201-9
  6. Kim YJ, Choi JH, A clinical study on intraoral anchorage using titanium miniscrew. J Kor Dent Asso 2001;39:684-7
  7. Ohrnae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R, Yamasaki KI, Okano T, Yamada S, Shibasaki Y. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle dog. Am J Orthod Dentofacial Orthop 2001;119:489-97 https://doi.org/10.1067/mod.2001.114300
  8. Brown GA, McCarthy T, Bourgeault CA, Callahan DJ. Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws. J Orthop Res 2000;18:307-12 https://doi.org/10.1002/jor.1100180220
  9. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. Lippincott Williams & Wilkins, Philadelphia 2001;390-9
  10. Deguchi T, Takano-Yamamoto T, Kanomi R, Hartsfield JK Jr, Roberts WE, Garetto LP. The use of small titanium screws for orthodontic anchorage. J Dent Res 2003;82:377-81 https://doi.org/10.1177/154405910308200510
  11. Buchter A, Wiechmann D, Koerdt S, Wiesmann HP, Piffko J, Meyer U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin Oral Implants Res. 2005;16:473-9 https://doi.org/10.1111/j.1600-0501.2005.01149.x
  12. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373-8 https://doi.org/10.1016/S0889-5406(03)00565-1
  13. Yerby SA, Scott CS, Evans NJ, Messing KL, Carter DR. The effect of cutting flute design on bone screw insertion and pull-out properties, In 46th Annual Meeting of the Orthopaedic Research Society, poster session, poster 0875, 2000.12-1 5
  14. Ryken TC, Clausen JD, Traynelis VC, Goel VK. Biomechanical analysis of bone mineral density, insertion technique, screw torque and holding strength of anterior cervical plate screws. J Neurosurg 1995;83:325-9
  15. Lu WW, Zhu Q, Holmes AD, Luk KD, Zhong S, Leong JC. Loosening of sacral screw fixation under in vitro fatigue loading. J Orthop Res 2000;18:808-14 https://doi.org/10.1002/jor.1100180519
  16. Oktenoglu BT, Ferrara LA, Andalkar N, Ozer AF, Sarioglu AC, Benzel EC. Effects of hole preparation on screw pullout resistance and insertional torque: a biomechanical study. J Neurosurg 2001 ;94:91-6
  17. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion. Spine 2000;25:858-64 https://doi.org/10.1097/00007632-200004010-00015
  18. Ostman PO, Hellman M, Sennerby L. Direct implant loading in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin Implant Dent Relat Res 2005;1:60-9
  19. Bambini F, Meme L, Pellecchia M, Sabatucci A, Selvaggio R. Comparative analysis of deformation of two implant/abutment connection systems during implant insertion. An in vitro study, Minerva Stomatol 2005;54:129-38
  20. O'Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res 2004;6:48-57 https://doi.org/10.1111/j.1708-8208.2004.tb00027.x
  21. O'Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res 2004;15:474-80 https://doi.org/10.1111/j.1600-0501.2004.01041.x
  22. Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner Tschabitscher M, Bergmann H. Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. Radiology 2002;224:247-52 https://doi.org/10.1148/radiol.2241010948
  23. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003;275:1081-101
  24. Matsumoto A. Mechanical evaluation of a soft tissue interference screw with a small diameter: significance of grafthone tunnel cross-sectional area ratio. Knee Surg Sports Traumatol Arthrosc 2006; 14:330-4 https://doi.org/10.1007/s00167-005-0675-0
  25. Berkowitz R, Njus G, Vrabec G. Pullout strength of self-tapping screws inserted to different depths. J Orthop Trauma 2005;19:462-5 https://doi.org/10.1097/01.bot.0000161544.72757.95
  26. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999;57:700-6 https://doi.org/10.1016/S0278-2391(99)90437-8
  27. Kim JW, Cho IS, Lee SJ, Kim TW, Chang YI. Mechanical analysis of the taper shape and length of orthodontic mini-implant for initial stability. Korea J Orthod 2006;36:55-62
  28. Lim JW, Kim WS, Kim IK, Son CY, Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korea J Orthod 2003;33:11-20
  29. Lee JS. Contact non-linear finite element model analysis of immediately-loaded orthodontic mini implant [thesis]. Seoul, Korea: Yonsei University; 2004
  30. Ueda M, Matsuki M, Jacobsson M, Tjellstrom A. Relationship between insertion torque and removal torque analyzed in fresh temporal bone. Int J Oral Maxillofac Implants. 1991;6:442-7