• 제목/요약/키워드: Bonding condition

검색결과 436건 처리시간 0.021초

도기질 타일 부착조건(바탕면, 붙임재료 및 양생조건)이 부착강도에 미치는 영향에 관한 실험적 평가 (An Experimental study on the Effect of Bonding Conditions on Bonding Strength of Ceramic Tiles: Substrate, Setting Material and Curing Condition)

  • 기전도;이상현;조홍범;김영선;곽동영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.153-154
    • /
    • 2020
  • This study aims to find out the reason that tile adhesive(type III) for ceramic tile does not harden under some conditions especially high humidity even though long curing time. Bonding strength of adhesive between substrate and ceramic tile is evaluated depending on bonding conditions such as substrate kind(concrete, board), bonding material (tile adhesive, tile cement) and curing condition(humidity 50, 70%). Based on the results, this study aimed to establish the quality of tile adhesion strength under the relevant conditions.

  • PDF

Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향 (Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Novel Brazing법에 의한 Al의 공정접합에 관한 연구 (A Study of Eutectic Bonding for Aluminium using Novel Brazing Process)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.59-66
    • /
    • 2000
  • To investigate the optimum brazing condition, variation of bonded structure and mechanical properties of novel brazed pure Al with bonding condition (brazing temperature, time and Si/flux ratio) was studied. A basic study of the bonding mechanism was also examined. The optimum brazing condition was obtained at $590^{\circ}$ for 2 minutes and the bonded structure showed that it is composed of almost entirely eutectic Al-Si with near eutectic composition. At higher brazing temperature $630^{\circ}$, hypoeutectic Al-Si structure was observed in the bonded area and resulted in erosion of base metal. The thickness of eutectic layer formed in optimum brazing temperature increased linearly with the square root of time, showing a general diffusion controlled process. The ultimate tensile strength of bonded joint brazed at an optimum brazing condition was about 60% of base metal and its fracture surface showed a brittle mode.

  • PDF

구조용 압연강재와 연청동 합금의 반용융 확산접합 (A Semi-solid Bonding between Rolled Steel for Structural Parts and Lead Bronze Alloy)

  • 김우열;박홍일;이길근;서원찬
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.70-76
    • /
    • 2000
  • A rolled steel for structural parts and lead bronze alloy were bonded each other by a new semi-solid diffusion bonding process to investigate the effect of the process parameters, for example bonding temperature and bonding time, on the interface characteristics, and bonding behavior. It can be possible that manufacture of the bonded steel/lead bronze which has a cylindrical shape with inserted the lead bronze alloy into the steel ring by the diffusion bonding process under the semi-solid condition of the lead bronze alloy without any pressure and flux. It has been know that the control of the amount of the liquid phase in semi-solid lead bronze alloy was very important to obtain soundness interface, since the shear strength of the bonded steel/lead bronze at 850℃ for 60 minutes under the condition of about 40% of the liquid phase in the lead bronze alloy shows maximum value, 210 MPa. The shear strength increases with an increase in bonding time and show maximum value, and then decreases.

  • PDF

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

ZrO$_2$와 NiTi 합금의 고상접합 : (I)접합의 최적조건 및 접합강도 (The Solid State Bonding or ZrO2/NiTi: (I) Optimizating of Bonding Condition and its Strength)

  • 김영정;김환
    • 한국세라믹학회지
    • /
    • 제28권8호
    • /
    • pp.654-660
    • /
    • 1991
  • Stabilized Zirconia (3 mol % Yttria, 3Y-TZP) was joined with intermetallic compound NiTi which has similar thermal expansion coefficient. The optimum bonding condition was determined by the Taguchi Method. Under the optimum bonding condition, the 4-point bending strength was as high as 400 MPa. bonding interfaces were examined by optical microscope, SEM, and TEM; reaction products were identified by XRD and TEM, The relationship between products and strength was examined.

  • PDF

반응표면법을 이용한 이종재질의 접합 계면부 강도평가 및 접합특성에 관한 연구 (Study on the Bonding Property and Strength Evaluation in Bonding Interface Joints of Dissimilar Material using Response Surface Analysis)

  • 이승현;최성대;김기만;이종형
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.76-82
    • /
    • 2009
  • In this papers, Study on the Bonding property and Strength Evaluation in Bonding interface Joints of Dissimilar material using DOE. We found optimal condition that uses experimental design method (Response Surface Analysis, DOE) used temperature, pressure, time on experiment factor. And we could get bonding condition and strength that break and crack do not happen in mechanical processing about united dissimilar material. And progress 3 point bending tests and verified result.

  • PDF

COG본딩 공정 중 형성된 기포가 접합 신뢰도에 미치는 영향 (The Effect of Bubble Generated during COG Bonding on the Joint Reliability)

  • 최은수;윤원수;정영훈;김보선;진송완
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.21-27
    • /
    • 2010
  • The effect of COG bonding parameters, especially the bonding temperature, on the bonding quality and reliability was investigated in this paper. We measured the bubble area formed in the ACF resin during the bonding process and tried to investigate the relationship between bubble area and bonding peel strength. 85/85 test which exposes a sample to a 85% humidity and $85^{\circ}C$ temperature condition was also carried out. The bubble area was dramatically increased under ~$10^{\circ}C$ lower than recommended bonding temperature. The bubble area formed at the edge of IC chip was larger than the other parts of IC chip. But the peel strength was not associated with the bubble area. High temperature and humid condition made the bubble area larger, but we could not find clear trend of change in the peel strength.

인코넬 617을 이용한 고온고압용 미세채널 열교환기의 확산접합 공정에 관한 연구 (A Study of Diffusion Bonding Process for High Temperature and High Pressure Micro Channel Heat Exchanger Using Inconel 617)

  • 송찬호;윤석호;최준석
    • 설비공학논문집
    • /
    • 제27권2호
    • /
    • pp.87-93
    • /
    • 2015
  • Recently, the heat exchangers are requiring higher performance and reliability since they are being used under the operating condition of high temperature and pressure. To satisfy these requirements, we need special materials and bonding technology. This study presents a manufacturing technology for high temperature and high pressure micro channel heat exchanger using Inconel 617. The bonding performance for diffusion bonded heat exchanger was examined and analyzed. The analysis were conducted by measuring thermal and mechanical properties such as thermal diffusivity and tensile strength, and parametric studies about bonding temperature and pressing force were also carried out. The results provided insight for bonding evaluation and the bonding condition of $1200^{\circ}C$, and 50 tons was found to be suitable for this heat exchanger. From the results, we were able to establish the base technology for the manufacturing of Inconel 617 heat exchanger through the application of the diffusion bonding.

극저온용 복합재료의 접착부 강도에 미치는 표면처리 효과에 대한 연구 (Effect of Surface Treatment on Adhesive Bonding Strengh of Composite Material for Cryogenic Application)

  • 안명호;소용신;박동환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.28-28
    • /
    • 2010
  • The secondary barrier of cargo containment for membrane LNG tank is composed of composite materials such as rigid triplex (rigid secondary barrier, RSB) and flexible triplex (flexible secondary barrier, FSB). RSB and FSB are adhered to each other using an epoxy adherent and the quality of the secondary barrier depends on the bonding strength between them. The bonding strength between RSB and FSB is greatly influenced by the surface condition of RSB prior to joining. In this study, the effect of surface condition prior to joining on the joint strength and the fracture mode occurred between RSB and FSB have been examined in order to establish a proper surface treatment method for improving the bonding strength at the temperature of $-170^{\circ}C$.

  • PDF