• Title/Summary/Keyword: Bonding Quality

검색결과 277건 처리시간 0.039초

HIP DIFFUSION BONDING OF INTRICATE SHAPE COMPONENTS MADE OF LIGHT ALLOYS AND STEELS

  • Guelman, A.A.
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.769-775
    • /
    • 2002
  • The results gained as part of the study on weldability of compositions from steels, aluminium, titanium alloys in various combinations including similar and dissimilar metal bonding variants with reference to solution of specific practical problems are presented in this work. It has been shown that in the case of HIP/DB carried out with direct interaction of bonding surfaces of the most dissimilar material combinations under study, formation of high-quality joints is not assured due to various reasons. That is why development of special bonding techniques was required. The bonding techniques developed and used for HIP/DB of dissimilar steels, "Steel-bronze", "Titanium-niobium"; "Titanium-steel" and other compositions under study ensured vacuum-tight microvoid-free joints strength of a which was equal to the milder parent metal, including those obtained at reduced welding pressures. Examples of new products manufactured by HIP/DB using the technologies developed are presented.

  • PDF

The Characteristics of Thermal Resistance for Fluxless Eutectic Die Bonding in High Power LED Package (Fluxless eutectic die bonding을 적용한 high power LED 패키지의 열저항 특성)

  • Shin, Sang-Hyun;Choi, Sang-Hyun;Kim, Hyun-Ho;Lee, Young-Gi;Choi, Suk-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.303-304
    • /
    • 2005
  • In this paper, we report a fluxless eutectic die bonding process which uses 80Au-20Sn eutectic alloy. The chip LEDs are picked and placed on silicon substrate wafers. The bonding process temperatures and force are $305\sim345^{\circ}C$ and 10$\sim$100gf, respectively. The bonding process was performed on graphite heater with nitrogen atmosphere. The quality of bonding are evaluated by shear test and thermal resistance. Results of fluxless eutectic die bonding show that shear strength is Max. 3.85kgf at 345$^{\circ}C$ /100gf and thermal resistance of junction to die bonding is Min. 3.09K/W at 325$^{\circ}C$/100gf.

  • PDF

Joining of Multi Nodes of a Titanium Bicycle by the Superplastic Hydroforming and Diffusion Bonding Technology (티타늄 자전거의 다중 조인트 접합을 위한 초소성 하이드로포밍과 확산 접합 기술)

  • Yoo, Y.H.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • 제28권1호
    • /
    • pp.15-20
    • /
    • 2019
  • The superplastic forming/diffusion bonding process has been developed to fabricate a core frame structure with joint nodes out of tubes, for the development of a titanium high performance bicycle. The hydroforming process has been applied for bulging of a tube in the superplastic condition before, and during the diffusion bonding process. In this experiment, a commercial Ti-3Al-2.5V tube was selected as raw material for the study. The forming experiment has been performed using a servo-hydraulic press with a capacity of 200 ton. Next, nitrogen gas was used to acquire necessary pressure for the bulging and bonding of the tubes to fabricate the joint nodes. The pertinent processing temperature was $870^{\circ}C$ for the superplastic hydroforming/diffusion bonding (SHF/DB) process, using the Ti-3Al-2.5V tube. The bonding quality and the progress of bulging and diffusion bonding have been observed by the investigation of the joining interfaces at the cross section of the joint structure. The control of the nitrogen pressure throughout the SHF/DB process, was an important factor to avoid any significant defects in the joint structure. The whole progress stage of the diffusion bonding could be observed at a joint interface. A core structure with 5 joint nodes to manufacture a titanium bicycle could be obtained in a SHF/DB process.

Inhomogeneous bonding state modeling for vibration analysis of explosive clad pipe

  • Cao, Jianbin;Zhang, Zhousuo;Guo, Yanfei;Gong, Teng
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.233-242
    • /
    • 2019
  • Early detection of damage bonding state such as insufficient bonding strength and interface partial contact defect for the explosive clad pipe is crucial in order to avoid sudden failure and even catastrophic accidents. A generalized and efficient model of the explosive clad pipe can reveal the relationship between bonding state and vibration characteristics, and provide foundations and priory knowledge for bonding state detection by signal processing technique. In this paper, the slender explosive clad pipe is regarded as two parallel elastic beams continuously joined by an elastic layer, and the elastic layer is capable to describe the non-uniform bonding state. By taking the characteristic beam modal functions as the admissible functions, the Rayleigh-Ritz method is employed to derive the dynamic model which enables one to consider inhomogeneous system and any boundary conditions. Then, the proposed model is validated by both numerical results and experiment. Parametric studies are carried out to investigate the effects of bonding strength and the length of partial contact defect on the natural frequency and forced response of the explosive clad pipe. A potential method for identifying the bonding quality of the explosive clad pipe is also discussed in this paper.

Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting (발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석)

  • Hong, Eui-Joon;Chang, Seok-Bue;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제12권3호
    • /
    • pp.247-255
    • /
    • 2010
  • Bonding strength of shotcrete is a significant influential factor which plays the role of collapse prevention of tunnel crown and of debonding prevention of shotcrete induced by the blasting vibration. Thus, the evaluation of the shotcrete bonding state is one of the core components for shotcrete quality control. In this study, the peak particle velocities induced by blasting were measured on the shotcrete in a tunnel construction site and its effect on the bonding state of shotcrete is investigated. Drilling and blasting technique was used for the excavation of intersection tunnel connecting the main tunnel with the service tunnel. Blast-induced vibrations were monitored at some points of the main tunnel and the service tunnel. The shotcrete bonding state was evaluated by using impact-echo test coupled with the time-frequency domain analysis which is called short-time Fourier transformation. Analysis results of blast-induced vibrations and the time-frequency domain impact-echo signals showed that the blasting condition applied to the excavation of intersection tunnel hardly affects on the tunnel shotcrete bonding state. The general blasting practice in Korea was evaluated to have a minor negative impact on shotcrete quality.

The effect of the gold based bonding agents on the bond between Ni-Cr alloys and ceramic restorations (Ni-Cr합금과 도재간의 결합력에 gold-based bonding agent가 미치는 영향)

  • Lee, Jung-Hwan;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • 제29권2호
    • /
    • pp.213-223
    • /
    • 2007
  • The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. The adhesion between metal substructure and dental porcelain is related to the diffusion of oxygen to the reaction layer formed on cast-metal surface during firing. The purposed of this investigation was to study the effects of gold based bonding agent on Ni-Cr alloy-ceramic adhesion between porcelain matrix, gold based bonding agent and metal substructure interface. gold based bonding agent have been applied as an intermediate layer between a metal substructure and a ceramic coating. gold based bonding agent(Aurofilm NP, Metalor, Swiss) was applied on Ni-Cr alloy surface by four method. Surfaces only air abraded with 110${\beta}\neq$ Al2O3 particles were used as control. metal ceramic adhesion was evaluated by a biaxial flexure test(N=5) and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that the layering sequence of gold based bonding agent is very important and can improve porcelain adherence to PFM.

  • PDF

The Effect of Bubble Generated during COG Bonding on the Joint Reliability (COG본딩 공정 중 형성된 기포가 접합 신뢰도에 미치는 영향)

  • Choi, Eun-Soo;Yun, Won-Soo;Jeong, Young-Hun;Kim, Bo-Sun;Jin, Song-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권7호
    • /
    • pp.21-27
    • /
    • 2010
  • The effect of COG bonding parameters, especially the bonding temperature, on the bonding quality and reliability was investigated in this paper. We measured the bubble area formed in the ACF resin during the bonding process and tried to investigate the relationship between bubble area and bonding peel strength. 85/85 test which exposes a sample to a 85% humidity and $85^{\circ}C$ temperature condition was also carried out. The bubble area was dramatically increased under ~$10^{\circ}C$ lower than recommended bonding temperature. The bubble area formed at the edge of IC chip was larger than the other parts of IC chip. But the peel strength was not associated with the bubble area. High temperature and humid condition made the bubble area larger, but we could not find clear trend of change in the peel strength.

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (구리 질화막을 이용한 구리 접합 구조의 접합강도 연구)

  • Seo, Hankyeol;Park, Haesung;Kim, Gahui;Park, Young-Bae;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제27권3호
    • /
    • pp.55-60
    • /
    • 2020
  • The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.

The Influence of Pulp Fines on Paper Structural Characteristics (종이의 구조 특성에 미치는 미세섬유의 영향)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제38권4호
    • /
    • pp.17-23
    • /
    • 2006
  • Paper has fibers and fines network structure and it is strongly affected by interface bond-ing between fibers. Paper structural properties can be determined depending on the inter-fiber bonding. Fines play an important role in Campbell and consolidation effect through wet pressing and drying operations. The fines are essential for the formation of bonds between fibers and for the improvement of strength properties of papers. Since the fines are components of the pulp, there are always two factors to be considered: the quality and quantity of the fines. The quality of fines might be a potential variable to give a more accurate picture of the papermaking potential of the pulp. The object of this study is to investigate the effect of different types of pulp fines on the properties of paper and to access the potential of fines for controlling the bulk of paper. Refined Sw-BKP, Hw-BKP and BCTMP fines were used to investigate the fines effect. Wet-web strength, breaking length, scattering coefficient, and hydrodynamic specific volume, and drying shrinkage were measured. According to the results, chemical and morphological compositions of fines do not strongly affect to wet-web forming by their similar Campbell effect, but strongly affect to drying operation which forms hydrogen bonding among fiber-fines-fiber matrixes. Paper bulk should be controlled by the extent of hydrogen bonding between fibers during drying operation.

Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg

  • Mahendran, G.;Balasubramanian, V.;Senthilvelan, T.
    • Advances in materials Research
    • /
    • 제1권2호
    • /
    • pp.147-160
    • /
    • 2012
  • In the present study, diffusion bonding was carried out between AZ31B magnesium and AA2024 aluminium in the temperature range of $405^{\circ}C$ to $475^{\circ}C$ for 15 min to 85 min and 5MPa to 20 MPa uniaxial loads was applied. Interface quality of the joints was assessed by microhardness and shear testing. Also, the bonding interfaces were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectrometer and XRD. The maximum bonding and shear strength was obtained at $440^{\circ}C$, 12 MPa and 70 min. The maximum hardness values were obtained from the area next to the interface in magnesium side of the joint. The hardness values were found to decrease with increasing distance from the interface in magnesium side while it remained constant in aluminium side. It was seen that the diffusion transition zone near the interface consists of various phases of $MgAl_2O_4$, $Mg_2SiO_4$ and $Al_2SiO_5$.