Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.3.055

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer  

Seo, Hankyeol (Nano-IT Convergence Engineering, Graduate School of Nano-IT-Design Convergence, Seoul National University of Science and Technology)
Park, Haesung (Department of Mechanical Engineering, Seoul National University of Science and Technology)
Kim, Gahui (School of Materials Science and Engineering, Andong National University)
Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
Kim, Sarah Eunkyung (Nano-IT Convergence Engineering, Graduate School of Nano-IT-Design Convergence, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.3, 2020 , pp. 55-60 More about this Journal
Abstract
The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.
Keywords
Copper bonding; Copper nitride; Shear test; Four point bending; 3D packaging;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 T. Ohba, N. Maeda, H. Kitada, K. Fujimoto, K. Suzuki, T. Nakamura, A. Kawai, and K. Arai, "Thinned wafer multistack 3DI technology", Microelectron. Eng., 87(3), 485 (2010).   DOI
2 A. Fan, A. Rahman, and R. Reif, "Copper wafer bonding", Electrochem. Solid-State Lett., 2(10), 534 (1999).   DOI
3 S. G. Kang, J. Lee, E. S. Kim, N. Lim, S. Kim, S. Kim, and S. E. Kim, "Fabrication and Challenges of Cu-to-Cu Wafer Bonding", J. Microelectron. Packag. Soc., 19(2), 29 (2012).   DOI
4 Y. P. Huang, Y. S. Chien, R. N. Tzeng, M. S. Shy, T. H. Lin, K. H. Chen, C. T. Chiu, J. C. Chiou, C. T. Chuang, W. Hwang, H. M. Tong, and K. N. Chen, "Novel Cu-to-Cu Bonding with Ti Passivation at 180 ?C in 3-D Integration", IEEE Electr. Device L., 34(12), 1551 (2013).   DOI
5 C. S. Tan, D. F. Lim, S. G. Singh, S. K. Goulet, and M. Bergkvist, "Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol", Appl. Phys. Lett., 95(19), 192108 (2009).   DOI
6 H. Park and S. E. Kim, "Two-Step Plasma Treatment on Copper Surface for Low-Temperature Cu Thermo-Compression Bonding", IEEE Trans. Comp. Packag. Manufac. Tech., 10(2), 332 (2020).   DOI
7 J. Li, Q. Liang, T. Shi, J. Fan, B. Gong, C. Feng, J. Fan, G. Liao, and Z. Tang, "Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding", J. Alloys Compd., 772, 793 (2019).   DOI
8 Z. Liu, J. Cai, Q. Wang, Z. Wang, L. Liu, and G. Zou, "Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu-Cu bonding using Ag nanostructure as intermediate", J. Alloys Compd., 767, 575 (2018).   DOI
9 A. K. Panigrahi, T. Ghosh, C. H. Kumar, S. G. Singh, and S. R. K. Vanjari, "Direct, CMOS In-Line Process Flow Compatible, Sub 100 $^{\circ}C$ Cu-Cu Thermocompression Bonding Using Stress Engineering", Electron. Mater. Lett., 14(2), 328 (2018).   DOI
10 J. Li, Q. Liang, C. Chen, T. Shi, G. Liao, and Z. Tang, "Cu-Cu Bonding by Low-Temperature Sintering of Self-Healable Cu Nanoparticles", Proc. 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, IEEE (2019).
11 J. J. Li, C. L. Cheng, T. L. Shi, J. H. Fan, X. Yu, S. Y. Cheng, G. L. Liao, and Z. R. Tang, "Surface effect induced Cu-Cu bonding by Cu nanosolder paste", Mater. Lett., 184, 193 (2016).   DOI
12 R. He, M. Fujino, A. Yamauchi, Y. Wang, and T. Suga, "Combined surface activated bonding technique for low-temperature Cu/Dielectric hybrid bonding", ECS J. Solid State Sci. Technol., 5(7), 419 (2016).
13 C. S. Tan, L. Peng, H. Y. Li, D. F. Lim, and S. Gao, "Waferon-Wafer Stacking by Bumpless Cu-Cu Bonding and Its Electrical Characteristics", IEEE Elec. Dev. Lett., 32(7), 943 (2011).   DOI
14 H. Seo, H. Park, and S. E. Kim, "Cu-SiO2 Hybrid Bonding", J. Microelectron. Packag. Soc., 27(1), 17 (2020).
15 C. -H. Tseng, K. N. Tu, and C. Chen, "Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding", Sci. Rep., 8(1), 10671 (2018).   DOI
16 W. Yang, Y. Lu, C. Zhou, J. Zhang, and T. Suga, "Study of Cu Film Surface Treatment Using Formic Acid Vapor/Solution for Low Temperature Bonding", J. Elec. Soc., 165(4), H3080 (2017).   DOI
17 S. -Y. Liang, J. -M. Song, S. -K. Huang, Y. -T. Chiu, D. Tarng, and C. -P. Hung, "Light enhanced direct Cu bonding for advanced electronic assembly", J. Mater. Sci., 29(16), 14144 (2018).
18 G. Kim, J. Lee, S. Park, S. Kang, T. S. Kim, and Y. B. Park, "Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications", J. Microelectron. Packag. Soc., 25(2), 41 (2018).   DOI
19 M. Charalambides, "Fracture mechanics specimen for interface toughness measurement", Journal of Applied Mechanics, 56(0), 77 (1989).   DOI
20 M. Karnezos, "3D packaging: where all technologies come together", Proc. IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, San Jose, CA, USA, IEEE (2004).
21 E. Beyne, "3D system integration technologies", Proc. International Symposium on VLSI Technology, Systems and Applications, Honoluou, HI, USA, IEEE (2006).
22 S. Das, A. P. Chandrakasan, and R. Reif, "Calibration of Rent's rule models for three-dimensional integrated circuits", IEEE T. VLSI Syst., 12(4), 359 (2004).   DOI
23 S. W. Yoon, D. W. Yang, J. H. Koo, M. Padmanathan, and F. Carson, "3D TSV processes and its assembly/packaging technology", Proc. IEEE International Conference on 3D System Integration (3DIC), San Francisco, CA, USA, IEEE (2009).
24 H. S. Park, H. K. Seo, M. Park, and S. E. Kim, "Development of CMOS-compatible low temperature Cu bonding optimized by the response surface methodology", Proc. 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, IEEE (2020).
25 Z. Wu, J. Cai, Q. Wang, and J. Wang, "Low temperature Cu- Cu bonding using copper nanoparticles fabricated by high pressure PVD", AIP Advances, 7(3), 035306 (2017).   DOI
26 J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, G. Liao, and Z. Tang, "Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste", Nanoscale Res. Lett., 12, 255 (2017).   DOI