• Title/Summary/Keyword: Bond Performance

Search Result 694, Processing Time 0.033 seconds

Influence of porosity and cement grade on concrete mechanical properties

  • Huang, Jiandong;Alyousef, Rayed;Suhatril, Meldi;Baharom, Shahrizan;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Assilzadeh, Hamid
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

The performance of solar heat pump with non-freon refrigerant $CF_3CH_2F$(R-134a) for school classroom heating[II] (태양열 이용 비프레온계 $CF_3CH_2F$(R-134a)적용 열펌프시스템에 의한 학교교실 난방에 관한 연구(II))

  • Sun, Kyung-Ho;Jung, Hyun-Chai;Kim, Ki-Sun
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.3-15
    • /
    • 1997
  • The goal of this paper is to measure and compare the performance of solar heat pump for school classroom heating. To accomplish the goal, solar heat pump with alumium roll bond type evaporator and indoor heat exchanger(condenser) was built and fully instrumented with thermocouples and pressure transducers etc. The test results showed that the COP and capacity of R-134a($CF_3CH_2F$) were higher than those of R-12($CF_2Cl_2$). The solar heat pump system for room heating was designed to show the best efficiency that the room temperature make $18{\sim}20^{\circ}C\;and\;23{\sim}25^{\circ}C$ in Seoul during November, December, and January.

  • PDF

Evaluation of the Basic Properties of Materials for Application of Functional Plaster Mortar (기능성 미장 모르타르의 현장 적용을 위한 재료별 기초 물성에 관한 평가)

  • Cho, Do-Young;Kim, Gyu-Yong;Miyauchi, Hiroyuki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2012
  • The development of building must be accompanied with construction technology and performance of materials. In particular, wet processes have a high level of dependence on manpower and a low level of diversification of materials used. This study aimed to determine the applicability of various materials for wet process, mechanized construction and eco-friendly building materials through a comparison with dry premixed mortar. As a result, it was found that resin plaster and gypsum plaster's strength is lower than that of dry cement mortar, but their mechanization application, construction simplification, smoothness and bond strength are higher than that of dry cement mortar. And estimate that is valid as workability, bonding strength, eco-friendly building material in occasion of gypsum plaster.

Manufacturing of High Water-Resistant Particleboard by Combining Use of Urea Resin and EMDI Resin (요소수지와 EMDI수지의 복합이용에 의한 고내수정 파티클보드의 제조)

  • Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.97-105
    • /
    • 1998
  • This study examined the combined using effects of urea-formaldehyde (UF) resin and emulsifiable methylene diphyenyl diisocyanate (EMDI) resin to overcome performance limit of three-layer particleboards commonly made by UF resin. Two adhesive adding methods were applied with three types of resin combination system to each layer of particleboards. The one was simultaneously spreading method with emulsified compound resin (UF and EMDI) while the other was separately spreading method with unemulsified EMDI resin after UF resin spreading. The performance of particleboards bonded with 2% EMDI resin to the inner layers(IL) were similar to that of controls bonded with 8% UF resin. In the case of the emulsified compound resin application to the all layers of particleboards, there were marked reinforcing effects of EMDI resin, although a small amount of EMDI resin was mixed with UF resin. Especially bending MOR after 24 hours cold water-immersion and thickness swelling after 2 hours hot water-immersion of compound resin-bonded particleboards were remarkably different from those of pure UF resin-bonded particleboards. It was found that separately spreading method with unemulsified EMDI resin was more effective than simultaneously spreading method with emulsified compound resin to sustain the internal bond strength of particleboards after 24 hours cold water-immersion. In the resin combination systems to outer layers/inner layers of particleboards, water resistance and strength properties were superior in order of UF+EMDI/UF+EMDI > UF/UF+EMDI > UF/UF. And water resistance of particleboards was greatly dependent upon EMDI resin level in any adhesive adding method.

  • PDF

Tensile Adhesive Chracteristics of Waterproofing System for Concrete Bridge Decks (교량 바닥판 조건에 따른 교면방수 시스템의 인장접착 특성)

  • Lee, Byung-Duck;Shim, Jae-Won;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.15-23
    • /
    • 2002
  • The waterproofing system's performance is known to show a determing by complex interaction of material factors, design details, and the quality of construction, and the waterproofing integrity of waterproofing membranes is determined by the bond to the deck and the amount of damage to the waterproofing membrane. In this research, the basic properties of waterproofing membranes on market and the tensile adhesive chracteristics of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. For the tensile adhesive strength of sheet waterproofing membranes, the results after asphalt concrete paving tends to increase more than before those. The results of the liquid waterproofing membranes are upside-down, and the more concrete has strength, the more strength of tensile adhesive increase. The ambient temperature of asphalt concrete when application of the waterproofing membrane has considerable influence on the performance of waterproofing system. As described above, waterproofing system can be influenced by several factors. If they are not considered under construction, the overlooking will cause the damages of pavement and waterproofing system after traffic opening.

  • PDF

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Lee, Jeong-Min;Lee, Jong-Ho;KoPark, Sang-Hee;Yoon, Sung-Min;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.660-666
    • /
    • 2009
  • We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top-gate In-Ga-Zn-oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below $200^{\circ}C$, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as $Si_3N_4$ and $Al_2O_3$, the electrical properties are analyzed. After post-annealing at $200^{\circ}C$ for 1 hour in an $O_2$ ambient, the sub-threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative-bias stress tests on TFTs with a $Si_3N_4$ IDL, the degradation sources are closely related to unstable bond states, such as Si-based broken bonds and hydrogen-based bonds. From constant-current stress tests of $I_d$ = 3 ${\mu}A$, an IGZO-TFT with heat-treated $Si_3N_4$ IDL shows a good stability performance, which is attributed to the compensation effect of the original charge-injection and electron-trapping behavior.

A study on the Freezing-Thawing Resistance for Repair Material of Concrete Structure (콘크리트 보수재료의 동결융해저항성에 관한 연구)

  • Lee, Bong-Chun;Chae, Sung-Tae;Jung, Sang-Hwa;Woo, Young-Je;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.621-624
    • /
    • 2008
  • Repair materials which applied to the concrete structures may have different quality characteristics depending on the environmental factors. Evaluation on durability of domestic repair materials have not yet secured enough quality performance on durability, mainly due to the lack of test methods resulted from various environmental factors. In this study, we carried out the tests on freezing and thawing resistance of domestic repair materials with different environmental factors applied under BS EN 13687, and analyzed the results by comparing with Korea's national test standards(KS F 4716). The results indicate that after the repetition of dry and wet conditions and the test on freezing and thawing with salt immersion resistance bond strength might show great difference depending on the type of repair materials and the size of sample. For securing better quality performance of repair materials, it is required to establish various standards on the test methods of freezing and thawing resistance with different environmental factors applied.

  • PDF

A Study on the Methodology to Performance Security on the Korea Small/Medium Sized Construction Firms for Venturing into International Market (국내 중소건설업체의 해외 진출 활성화를 위한 건설 보증 확대 방안에 관한 연구)

  • Ahn, Hyoung-Jun;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.225-229
    • /
    • 2009
  • International construction market has been open to other countries, and it derives the development of our overseas construction industry quantitatively as well as qualitatively. Until now, the major companies have an absolute majority in the overseas construction market, and the small and medium enterprises have had difficulty to get a leadership in the international construction market because of the lack of the technical expertise and the capital strength. Especially in the Middle East Asia, our construction companies has touched off a boom, so our market share also has grown, which derived from the up toward ratchet oil prices and a worldwide boom in real estate development. The small and medium enterprise minority have recognition that the overseas construction market is the major company's native territory. But Data from the existing researches and many statistics indicate the most companies tend to underestimate the capacity and international competitiveness of the small and medium enterprises. As a matter of fact, hundreds of small and medium enterprise cut a conspicuous figure in overseas market. Consequently, it is indispensable to overcome the international financial crisis by revitalizing our overseas construction industry which obtains excellent results in international market. this study suggested the ways to expand overseas bonding capacity of Korean financial institution. This study proposed the Korean government to allow Construction Guarantee (former Korea Construction Financial Cooperative) to deal with foreign exchange so that Construction Guarantee will underwrite the overseas construction bond.

  • PDF

Compressive resistance behavior of UHPFRC encased steel composite stub column

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Zhang, Jiasheng
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • To explore the feasibility of eliminating the longitudinal rebars and stirrups by using ultra-high-performance fiber reinforcement concrete (UHPFRC) in concrete encased steel composite stub column, compressive behavior of UHPFRC encased steel stub column has been experimentally investigated. Effect of concrete types (normal strength concrete, high strength concrete and UHPFRC), fiber fractions, and transverse reinforcement ratio on failure mode, ductility behavior and axial compressive resistance of composite columns have been quantified through axial compression tests. The experimental results show that concrete encased composite columns with NSC and HSC exhibit concrete crushing and spalling failure, respectively, while composite columns using UHPFRC exhibit concrete spitting and no concrete spalling is observed after failure. The incorporation of steel fiber as micro reinforcement significantly improves the concrete toughness, restrains the crack propagation and thus avoids the concrete spalling. No evidence of local buckling of rebars or yielding of stirrups has been detected in composite columns using UHPFRC. Steel fibers improve the bond strength between the concrete and, rebars and core shaped steel which contribute to the improvement of confining pressure on concrete. Three prediction models in Eurocode 4, AISC 360 and JGJ 138 and a proposed toughness index (T.I.) are employed to evaluate the compressive resistance and post peak ductility of the composite columns. It is found that all these three models predict close the compressive resistance of UHPFRC encased composite columns with/without the transverse reinforcement. UHPFRC encased composite columns can achieve a comparable level of ductility with the reinforced concrete (RC) columns using normal strength concrete. In terms of compressive resistance behavior, the feasibility of UHPFRC encased steel composite stub columns with lesser longitudinal reinforcement and stirrups has been verified in this study.