• Title/Summary/Keyword: Blue host

Search Result 173, Processing Time 0.032 seconds

A New Door for Molecular-Based Organic Electroluminescent Devices

  • Jou, Jwo-Huei;Wang, Wei-Ben;Hsu, Mao-Feng;Lai, Wen-Hsuan;Chen, Chin-Ti;Chin, Chih-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.350-353
    • /
    • 2009
  • While the comparatively high MW would make the employed molecules extremely difficult to vacuum-evaporate, and result in poor device performance, the wet-process has been proven to be quite effective and convenient as usual to the fabrication of high-efficiency OLEDs composing high MW components.

  • PDF

Electrical and Optical Properties of Organic Light Emission Devices using Selective Doping in a Single Host (단일 호스트를 이용하여 선택적으로 도핑된 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.124-127
    • /
    • 2010
  • We have fabricated organic white light emitting device by two colors from yellow fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) and blue phosphorescent material (iridum-bis(4,6-difluorophenylpyridinato-N,C2)-picolinate(FIrpic). The threshold voltage is 5.3 V, and the brightness reaches 1000 cd/$m^2$ at 11 V, 14.5 mA/$m^2$. The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 lm/W at 6 V, 0.1 mA/$m^2$.

Optical Properties of ZnS:Mn,Cu,Cl Phosphor for Inorganic ELD (무기 ELD용 ZnS:Mn,Cu,Cl 형광체의 광학적 특성 연구)

  • Lee, Hak-Soo;Gwak, Ji-Hye;Han, Sang-Do;Han, Chi-Hwan;Kim, Jung-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.424-425
    • /
    • 2006
  • Zinc sulfide is a well-known host material of phosphor emitting different radiations dependent on different doping impurities of metallic ion. It emits green, blue, orange-yellow or white colors by doping with activators such as copper, silver, manganese and so on. In this study, manganese, copper and chlorine doped ZnS phosphor (ZnS:Mn,Cu,Cl) was synthesized by solid-state reaction method. The optical properties were investigated according to different concentrations of sulfur and activators used during the synthesis process.

  • PDF

Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods

  • Kim, Suyoung;Park, Yujin;Kim, Gidon
    • Research in Plant Disease
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2021
  • Xylella fastidiosa is the most damaging pathogen in many parts of the world. To increase diagnostic capability of X. fastidiosa in the field, the loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assay were developed to mqsA gene of citrate-synthase (XF 1535) X. fastidiosa and evaluated for specificity and sensitivity. Both assays were more robust than current published tests for detection of X. fastidiosa when screened against 16 isolates representing the four major subgroups of the bacterium from a range of host species. No cross reaction with DNA from healthy hosts or other species of bacteria has been observed. The LAMP and PCR assays could detect 10-4 pmol and 100 copies of the gene, respectively. Hydroxynaphthol blue was evaluated as an endpoint detection method for LAMP. There was a significant color shift that signaled the existence of the bacterium when at least 100 copies of the target template were present.

THE HISTOLOGIC STUDY OF BONE HEALING AFTER HORIZONTAL RIDGE AUGMENTATION USING AUTO BLOCK BONE GRAFT (자가골 블럭 이식을 이용한 수평골 증강술시 이식골의 치유)

  • Oh, Jae-Kwen;Choi, Byung-Jun;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.207-215
    • /
    • 2009
  • Purpose: The aim of the present study is to evaluate the long term bone healing after horizontal ridge augmentation using auto block bone graft for implant installation timing. Materials and Methods: Five Beagle dogs(which were 14 months old and weighted approximately 10kg). In surgery 1(extraction & bone defect), premolars(P2, P3,P4) were extracted and the buccal bone plate was removed to create a horizontally defected ridge. After three months healing, in surgery 2(ridge augmentation). Auto block bone grafts from the mandibular ramus were used in filling the bone defects were fixed with stabilizing screws. The following fluorochrome labels were given intravenously to the beagle dogs: oxytetracycline 1week after the surgery, alizarin red 4 weeks after the surgery, calcein blue 8 weeks after the surgery. The tissue samples were obtained from the sacrificed dogs of 1, 4, 8, 12, 16 weeks after the surgery. Non-decalcified sections were prepared by resin embedding and microsection to find thickness of $10{\mu}m$ for the histologic examination and analysis. Results: 1. We could achieve the successful reconstruction of the horizontal bone defect by auto block bone graft. The grafted bone block remained stable morohologically after 16 weeks of the surgery. 2. In the histologic view. We observed osteoid tissue from the sample $4^{th}$ week sample and active capillary reconstruction in the grafted bone from the $12^{th}$ week sample. Healing procedures of auto bone grafts were compared to that of the host bone. 3. Bone mineralization could be detected from the $8^{th}$ week sample. 4. Fluorochrome labeling showed active bony changes and formation at the interface of the host bone and the block graft mainly. Bony activation in the grafted bone could be seen from the $4^{th}$ week samples. Conclusions: Active bone formation and remodeling between the grafted bone and host bone can be seen through the revascularization. After the perfect adhesion to host bone, Timing of successful implant installation can be detected through the ideal ridge formation by horizontal ridge augmentation.

Blue Mold of Persimmon (Diospyros kaki) Caused by Penicillium crustosum (Penicillium crustosum에 의한 감 푸른곰팡이병 발생)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.217-220
    • /
    • 2003
  • A severe fruit rot of Persimmon (Diospyros kaki cv: Fuyu) was occurred during the storage and transport that infected with blue mold in Sweet Persimmon Experiment Station, Gyeongsangnam-do Agricultural Research and Extension Services, Korea. Fruit surfaces were infected with the fungus first and the colonized fungus formed mycelial mats. From the point of infection, fruits become collapsed and mostly ruptured. The pathogenic fungus from infected fruits was isolated and cultured on PDA. Colony color of the fungus was white at frist than became green on Malt Extract Agar and Czapek Yeast Extract Agar. Conidia were ellipsoid subglobose and 2.6${\sim}$3.8 ${\times}$ 2.4${\sim}$3.8 ${\mu}m$ in size. Stipes were 86${\sim}$320 ${\times}$ 2.8${\sim}$4.3 ${\mu}m$ in size. Rami were 7.5${\sim}$32.6 ${\times}$ 2.6${\sim}$4.2 ${\mu}m$ in size, Ramuli were 12.4${\sim}$14.8 ${\times}$ 3.2${\sim}$3.8 ${\mu}m$ in size, Metulae were 8.9${\sim}$13.6 ${\times}$ 2.8${\sim}$4.6 ${\mu}m$ in size. Phialides were ampulliform, 8.2${\sim}$12.4 ${\times}$ 2.3${\sim}$3.6 ${\mu}m$ in size. Based on the cultural and mycological characteristics and pathogenecity test on host plants, the fungus was identified as s, This is the first report on the blue mold of Persimmon (Diospyros kaki) caused by P. crustosum in Korea.

Blue Mold on Melon (Cucumis melo) Caused by Penicillium oxalicum (Penicillium oxalicum에 의한 멜론 푸른곰팡이병)

  • Wwon, Jin-Hyeuk;Kang, Soo-Woong;Kim, Jung-Soo;Park, Chang-seuk
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.220-223
    • /
    • 2002
  • In April of 2002, fruit rot infected with blue mold was found at maturing stage of melon (Cucumis melo cv. Gayabaegja) growing under tunnel cultivation in Daesan-myon, Haman-gun, Gyeongnam Province, Korea. Floral parts were infected first and colonized by fungal mycelial mats. From the point of infection, fruits become collapsed and mostly ruptured. The pathogenic fungus from infected fruits was isolated. Colony color of the fungus was white on MEA and CYA agar, Conidia were ellipsoid and 2.6~7.4$\times$2.6~5.8 ${\mu}{\textrm}{m}$ in size. Stipes were 86~320$\times$2.8~4.3 ${\mu}{\textrm}{m}$ in size. Metulae were 12.4~31.6$\times$2.6~4.2 ${\mu}{\textrm}{m}$ in size. Phialides were ampulliform to cylindroid, and 8.2~15.4$\times$3.6~4.6 ${\mu}{\textrm}{m}$ in size. Rate of infected fruits in the field was 4.3%. Based on the cultural and mycological characteristics and pathogenecity test on host plants, the fungus was identified as Penicillium oxalicum, This is the first report on the blue mold of melon (Cucumis melo) caused by P. oxalicum in Korea.

Occurrence of Blue Mold on Sweet Persimmon(Diospyros kaki) Caused by Penicillium expansum (Penicillium expansum에 의한 감 푸른곰팡이병 발생)

  • Kwon, Jin-Hyeuk;Jeong, Seon-Gi;Hong, Seung-Beom;Chae, Yun-Seok;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.290-293
    • /
    • 2006
  • A fruit rot of sweet persimmon(Diospyros kaki cv. 'Fuyu') that infected with blue mold was found during the storage and transport in Jinju Gyeongnam Province, Korea. Fruit surfaces that infected with the fungus were formed water soaked lesion at first then gradually colonized with the fungus and formed mycelial mats. From the point of infection, fruits become sunken and mostly ruptured. The pathogenic fungus was isolated from infected fruits and cultured on potato dextrose agar. The colonies of the pathogenic fungi were white at frist then became greyish green on malt extract agar. Conidia were ellipsoidal and $2.6{\sim}3.8{\times}2.4{\sim}3.8{\mu}m$ in size. Phialides were ampulliform, verticilate of 3-7, $8.0{\sim}9.2{\times}2.0{\sim}3.0{\mu}m$ in size. Metulae were verticils of 2-4, smooth, $9.0{\sim}12.6{\times}3.0{\sim}4.6{\mu}m$ in size. Ramuli were groups 1-3, smooth, $11.0{\sim}17.6{\times}2.3{\sim}3.0{\mu}m$ in size. Rami were groups 1-2, $7.5{\sim}32.6{\times}2.6{\sim}4.2{\mu}m$ in size. Stipes were septate, smooth, thin walled, $56{\sim}302{\times}2.8{\sim}4.0{\mu}m$ in size. Penicilli were mostly quaterverticillate. Based on the cultural and mycological characteristics as well as pathogenicity test on host plants, the fungus was identified as Penicillium expansum. This is the first report on the blue mold of sweet persimmon(Diospyros kaki) caused by P. expansum in Korea.

Fabrication and Characterization of High Luminance WOLED Using Single Host and Three Color Dopants (단일 호스트와 3색 도펀트를 이용한 고휘도 백색 유기발광다이오드 제작과 특성 평가)

  • Kim, Min Young;Lee, Jun Ho;Jang, Ji Geun
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.117-122
    • /
    • 2016
  • White organic light-emitting diodes with a structure of indium-tin-oxide [ITO]/N,N-diphenyl-N,N-bis-[4-(phenylm-tolvlamino)-phenyl]-biphenyl-4,4-diamine [DNTPD]/[2,3-f:2, 2-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile [HATCN]/1,1-bis(di-4-poly-aminophenyl) cyclo -hexane [TAPC]/emission layers doped with three color dopants/4,7-diphenyl-1,10-phenanthroline [Bphen]/$Cs_2CO_3$/Al were fabricated and evaluated. In the emission layer [EML], N,N-dicarbazolyl-3,5-benzene [mCP] was used as a single host and bis(2-phenyl quinolinato)-acetylacetonate iridium(III) [Ir(pq)2acac]/fac-tris(2-phenylpyridinato) iridium(III) $[Ir(ppy)_3]$/iridium(III) bis[(4,6-di-fluoropheny)-pyridinato-N,C2] picolinate [FIrpic] were used as red/green/blue dopants, respectively. The fabricated devices were divided into five types (D1, D2, D3, D4, D5) according to the structure of the emission layer. The electroluminescence spectra showed three peak emissions at the wavelengths of blue (472~473 nm), green (495~500 nm), and red (589~595 nm). Among the fabricated devices, the device of D1 doped in a mixed fashion with a single emission layer showed the highest values of luminance and quantum efficiency at the given voltage. However, the emission color of D1 was not pure white but orange, with Commission Internationale de L'Eclairage [CIE] coordinates of (x = 0.41~0.45, y = 0.41) depending on the applied voltages. On the other hand, device D5, with a double emission layer of $mCP:[Ir(pq)_2acac(3%)+Ir(ppy)_3(0.5%)]$/mCP:[FIrpic(10%)], showed a nearly pure white color with CIE coordinates of (x = 0.34~0.35, y = 0.35~0.37) under applied voltage in the range of 6~10 V. The luminance and quantum efficiency of D5 were $17,160cd/m^2$ and 3.8% at 10 V, respectively.

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang (밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물)

  • Koo, Hyo Jin;Jang, Jeong Kyu;Do, Jin Young;Jeong, Gi Young;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.473-483
    • /
    • 2018
  • Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.