Browse > Article
http://dx.doi.org/10.9719/EEG.2018.51.6.473

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang  

Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Jang, Jeong Kyu (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Do, Jin Young (Department of Archaeology, Anthropology and Art History, Gyeongju University)
Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Economic and Environmental Geology / v.51, no.6, 2018 , pp. 473-483 More about this Journal
Abstract
Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.
Keywords
Gukjeon mine; hydrated sulfate mineral; brochantite; schulenbergite; serpierite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 NRICH (National research Institute of Cultural Herigate) (2017) Investigation and Analysis of Traditional Pigment Minerals of Dancheong. NRICH, 295p.
2 Ohnishi, M., Kusachi, I., Kobayashi, S. and Yamakawa, J. (2007) Mineral chemistry of schulenbergite and its Zn-dominat analogue from the Hirao mine, Osaka, japan. Journal of Mineralogical and Petrological Sciences, v.102, p.233-239.   DOI
3 Ohnishi, M., Shimobayashi, N. and Kobayashi, S. (2012) Chemical composition of hydrowoodwardite from the Dogamaru mine, Shimane Prefecture and the Oike mine, Shiga Prefecture, Japan. Japanese Magazine of Mineralogical and Petrological Sciences, v.41, p.122-128.   DOI
4 Ohinishi, M., Shirakami, M. and Yoshimura, T. (2001) Secondary minerals from the Hirao Old Mine, Onsencho, Minoo City, Osaka Prefecture, Japan, Chigaku Kenkyu, v.50, p.137-159.
5 Okamoto, H., Morimoto, K., Anraku, S., Sato, T. and Yoneda, T. (2010) A novel remediation method learnt from natural attenuation process for Cu- and Znbearing wastewater. Clay Science, v.14, p.203-210.
6 Russell, A. (1927) Notice of an occurrence of niccolite and ullmannite at the Settlingstone mine, Fourstones, Northumberland; and of serpierite at Ross Island mine, Killarney, Co. Kerry, Ireland. Mineralogical Magazine, v.21, p.383-387.
7 Sabelli, C. and Zanazzi, P.F. (1968) The Crystal Structure of Serpierite, Acta Crystalographica, v.24, p.1214-1221.   DOI
8 Sabelli, C. and Zanazzi, P.F. (1972) The crystal structure of devillite. Acta Crystallographica, v.28, p.1182-1189.   DOI
9 Mumme, W.G., Sarp, H. and Chiappero, P.J. (1994) A note on the crystal structure of schulenbergite. Archives des Sciences (Geneve), v.47, p.117-124.
10 Sarp, H. (1985) Orthoserpierite $Ca(CuZn)_4(SO_4)_2(OH)_6{\cdot}3H_2O$, un nouveau-mineral de la Mine de Chessy, France, polymorphe de la serpierite. Swiss Bulletin of Mineralogy and Petrology, v.65, p.1-7.
11 Watanabe, H., Tazaki, K., Islam, A.B.M.R. and Chaerun, S.K. (2003) Copper biomineralization with banded structure at Dogamaru mine, Shimane Prefecture, Japan. In Water and Solid Environments: Microorganisms paly an important role (Tazaki, K. Ed.). Kanazawa University Press, Kanazawa, p.91-140.
12 Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn Skarn Deposits in Gukjeon Mine, Korea. Journal of the Mineralogical Society of Korea, v.23, no.4, p.413-428.
13 You, K. S. (2013) A Study on paints producing centers supply and demand environment of Chosun dynasty color pigment. Journal of Korean Society of Color Studies, v.27, p.27-37.
14 Zaharia, L. (2003) Serpierite Ca(Cu,Zn)4(OH)6(SO4)2${\cdot}$3H2O - The first occurrence in Romania. Studia Universitatis Babes-Bolyai, Geologia, v.48, no.1, p.77-84.   DOI
15 Zittlau, A.H., Shi, Q., Boerio-Goates, J., Woodfield, B.F. and Majzlan, J. (2013) Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Chemie der Erde, v.73, p.39-50.   DOI
16 Cook, R.B. (2009) Brochantite Blanchard Mine, Bingham, New Mexico, Rocks & Minerals, v.84, no.1, p.48-53.   DOI
17 Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C. (Eds.) (2006) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.
18 Braithwaite, R.S.W. (1982) Wroewolfeite in Britain. Mineralogical Record, v.13, p.167-174.
19 Braithwaite, R.S.W. and Knight, J.R. (1968) Serpierite from Ecton, Staffordshire. Mineralogical Magazine, v.36, p.882.   DOI
20 Brideges, T.F. (1987) Serpierite and devilline from the Northern Pennine Orefield. Proceedings of the Yorkshire Geological Society, v.46, no.2, p.169.   DOI
21 Garcia-Guinea, J., Furio, M., Sanchez-Moral, S., Jurado, V., Correcher, V. and Saiz-Jimenez, C. (2015) Composition and spectra of copper-carotenoid sediments from a pyrite mine stream in Spain. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v.135, p.203-210.   DOI
22 Gazquez, F., Rull, F., Medina, J., Calaforra, J.M., Forti, P., De Waele, J., Venegas, G. and Sanz, A. (2013a). Glaucocerinite forming gours in Su Zurfuru Mine (Sardinia, Italy). Revista de la Sociedad Espanola de Mineralogia, v.17, p.53-54.
23 IMA (International Mineralogical Association) (2018) The New IMA List of Minerals - A Work in Progress - Updated: March 2018. 211p.
24 Giester, G. and Rieck, B. (1996) Bechererite, (Zn,Cu) 6Zn2(OH)13[(S,Si)(O,OH)4]2, a novel mineral species from the Tonopah-Belmont mine, Arizona. Americal Mineralogist, v.81, p.244-248.   DOI
25 Hodenberg, R.V., Krause, W. and Tauber, H. (1984) Schulenbergite, $(Cu,Zn)_7(SO_4,CO_3)_2(OH)_{10}{\cdot}3H_2O$, a new mineral. Neues Jahrbuch Fur Mineralogie, Monatshefte, p.17-24.
26 Hong, S.H. and Choi, P.Y. (1988) Geological report ofthe Yucheon sheet (scale 1:50,000). Korea Institute of Energy and Resources.
27 Jeong, G.Y., Cho, H.G. and Do, J.Y. (2018) Occurrence and Mineralogical Propertiesof Green-Blue Inorganic Pigments in Korea. Korea. Journal of the Mineralogical Society of Korea, v.31, no.1, p.33-46.   DOI
28 Kingsbury, A.W.G. and Hartley, J. (1957) Serpierite from the Lake District. Mineralogical Magazine, v.31, p.604-605.   DOI
29 Kim, C.-M., Jeong, J.O., Gu, D. and Han, R. (2017) Identification of materials in principal slip zones of faults by X-ray diffraction analysis using a small amount of sample. Journal of the Geological Society of Korea. v.53, no.6, p.873-883.   DOI
30 Kim, K.B. and Hwang, S.G. (1988) Geological report of the Miryang sheet (scale 1:50,000). Korea Institute of Energy and Resources.
31 Kojiro, T., Yamada, T., Kikukawa, M. and Hirama, T. (1999) Minerals from Mikawa Mine, Niigata Prefecture. Quartz (Journal of the Friends of Mineral, Tokyo), v.12, p.9-16.
32 KORES (Korea Resources Corporation) (1979) Mineral deposits of Korea. KORES.
33 KORES (Korea Resources Corporation) (1981) Mineral deposits of Korea. KORES.
34 Kwak, J.Y., Kang, C.W., Joo, S.Y., Jeong, J.H. and Choi, J.B. (2015) Occurrence of Zn-Pb Deposits in Danjang- Myeon, Milyang Area. Korea. Journal of the Mineralogical Society of Korea, v.28, no.3, p.279-292.   DOI
35 Livingstone, A., Bridges, T.F. and Bevins, R.E. (1990) Schulenbergite and namuwite from Smallcleugh mine, Nenthead, Cumbria. Journal of the Russell Society, v.3, p.23-24.
36 Livingstone, A., Jackson, B. and Davidson, P.J. (1992) The zinc analogue of schulenbergite, from Ramsbeck, Germany. Mineralogical Magazine, v.56, p.215-219.   DOI
37 Livingstone, A., Macpherson, H.G. and Jackson, B. (1976) Wroewolfeite and other langite-group minerals from Blackcraig, Kircudbrightshire. Mineralogical Magazine, v.40, p.893-894.   DOI
38 Mason, J.S. and Green, D.I. (1995) Supergene minerals including exceptional ramsbeckite from Penrhiw Mine, Ystumtuen, Dyfed. UK Journal of Mines & Minerals, v.15, p.21-27.