논 문 23-2-6

단일 호스트를 이용하여 선택적으로 도핑된 OLEDs의 전기 및 광학적 특성

Electrical and Optical Properties of Organic Light Emission Devices using Selective Doping in a Single Host

서유석¹. 문대규^{1,a} (Yu-Seok Seo1 and Dae-Gyu Moon1,a)

Abstract

We have fabricated organic white light emitting device by two colors from yellow fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) and blue phosphorescent material (iridum-bis(4,6,difluorophenylpyridinato-N,C2)-picolinate(FIrpic). The threshold voltage is 5.3 V, and the brightness reaches 1000 cd/m² at 11 V, 14.5 mA/cm². The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 lm/W at 6 V, 0.1 mA/cm².

Kev Words: WOLED. Firpic. Rubrene

1. 서 론

백색 광원으로써 Organic light emitting diode(OLED)는 높은 휘도 및 발광 효율, 우수한 색순도, 대면적 면광원 제작 가능, 저가 공정, 및 다양한 재질의 기판에 제작이 가능하다는 장점을 가지고 있다. 이러한 장점으로 인해 OLED를 이용 한 광원은 차세대 광원 및 BLU(Back light unit) 로 많은 연구가 진행되고 있다[1-3]. 백색 OLED는 1995년 야마가타(Yamagata) 대학의 기도(Kido) 교 수팀이 적색, 녹색, 청색 발광 특성을 갖는 발광층 을 적층하여 백색 발광 특성을 보고한 이래로 고 효율, 장수명 특성 및 우수한 색순도를 구현하기 위한 여러 가지 재료 및 소자구조 개발이 진행되 어 오고 있다[4-6].

색, 녹색, 청색 발광 도판트(dopant) 물질을 공통의 호스트 물질에 도핑하는 방법, 적색, 녹색, 청색 발 광 물질을 각각 수평으로 적층하여 동시에 발광시

OLED에서 백색광을 구현하는 방법은 크게 적

1. 순천향대학교 디스플레이신소재공학과 (충남 아산시 신창면 읍내리 646)

a. Corresponding Author: dgmoon@sch.ac.kr

접수일자: 2009. 9. 23 심사완료: 2009. 12. 21

따라서, 본 연구 에서는 발광층의 단일 호스트로 1,3-Bis(carbazol-9-yl)benzene(MCP)를 사용하고 인 광 청색 도판트로는 Bis(3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl)iridium III(Firpic)을, 형광 적색 도판트로는 (5,6,11,12)-Tetraphenylnaphthacene (Rubrene)을 이용하여 백색 OLED소자를 제작하고 구동전압에 따른 EL 스펙트럼, J(전류밀도)-V(전

위해서는 발광층 내에서의 전류밀도에 따른 발광 특성을 분석할 필요가 있다.

키는 방법, 서로 보색 관계를 갖는 두 색을 적층하 는 방법, 단일 발광층으로 eximer, exciplexes의 형

성에 의한 넓은 파장대의 발광특성을 얻는 방법,

그리고 청색 발광층 으로부터 컬러 변화층을 이용

하는 down conversion등의 방식이 보고되고 있다.

청록색) 과 적색(또는 황색)의 2파장을 이용한 백

색 구현방법은 색 간섭이 적고 색 조절이 용이 하

며 공정 변수가 적어, 최근 많은 연구가 진행되고

있다[5]. 2파장 방식의 백색 OLED에서는 색조절이

용이한 반면, 전압에 따른 스펙트럼의 변화가 크다

는 단점이 있다. 2파장의 정확한 조합을 이루어 원

하는 색을 표현할 수 있는 백색 OLED를 구현하기

백색을 구현하는 여러 가지 방법 중 청색(또는

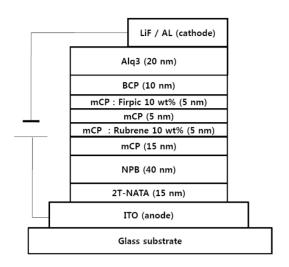


그림 1. 백색 OLED의 소자구조.

Fig. 1. Device structure of white OLED.

2. 실 험

본 연구를 위한 소자의 제작에 사용된 기파은 투명양극으로 두께는 150 nm이고 면저항은 20 Ω/sq 인 indium tin oxide (ITO)가 코팅된 유리 기판을 사 용 하였다. 패턴된 ITO 기판은 acetone, methanol, isopropylalcohol 의 순서로 각각 5분씩 초음파 세 척한 후 질소로 건조시켰다. 건조된 기판은 Ar과 O₂를 7:3으로 혼합한 가스를 100 sccm으로 하여 RF plasma 챔버에 주입하고 5분동안 50 W의 RF power로 plasma 처리 하였다. ITO 기판을 진공 챔버에 넣고 Hole injection layer (HIL) 으로 4,4',4''-Tris(N-(2-naphthyl)-N-phenyl-amino) triphenylamine (2T-NATA) 를 15 nm, Hole transport layer (HTL) 으로 N, N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB) 40 nm 증 착하였다. Emission layer (EML)은 호스트 물질 mCP에 FIrpic을 10 wt% 로 하여 Hole blocking layer (HBL) 와의 계면에 5 nm 두께로 도핑 하였 고, 적색 도판트인 Rubrene은 청색 발광층으로부터 5 nm의 간격을 두고 5 nm의 두께로 10 wt%의 농도로 도핑하였다. EML 도핑영역은 그림 1에 나 타내었다. HBL 역할을 하는 9-dimethyl-4,7diphenyl-1,10-phenanthroline (BCP)는 10 nm로 Electon transport layer (ETL)인 Tris(8-hydroxyquinolinato)aluminium (Alq3)는 20 nm로 증착 하 였다. 유기물 증착 후 4 mm 선폭의 금속 마스크 를 이용하여 Electron injection layer (EIL)인 LiF 를 0.5 nm, 음극으로 Al 100 nm를 증착 하였다.

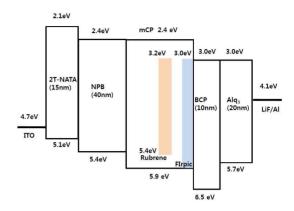


그림 2. 본 연구에서 사용된 OLED소자의 에너지 대역도

Fig. 2. Current efficiency-current density curves of the blue phosphorescent OLEDs.

제작된 OLED 소자의 전기발광 스펙트럼은 spectro-radiometer(Minolta model CS-1000)을 사용 하여 측정 하였으며 전류밀도(J) - 전압(V)-휘도(L) 특성은 source-measure unit(Keithley 2400)과 chromameter(Minolta CS-100A)를 사용하여 상은에서 동시에 측정하였다.

3. 결과 및 고찰

그림 3은 백색 OLED소자의 구동전압에 대한 전류밀도 및 휘도의 변화를 나타내는 그래프이다. 1 cd/m²의 휘도를 나타내는 동작전압은 5.2 V로 나타났으며, 이때의 전류밀도는 0.011 mA/cm²이었다. 구동전압의 증가에 따라 휘도가 증가하여 11 V에서 1000 cd/m²의 휘도를 나타내었고, 이때의 전류밀도는 14.5 mA/cm²이었다. 100 cd/m²의 휘도를 나타내는 전압은 약 8 V로 나타났고, 최대 휘도는 6500 cd/m²로 14 V 236 mA/cm² 의 전류 밀도에서 가장 높게 나타났다. 전류밀도가 100 m A/cm²일 때의 전압은 13.2 V 이고, 이때의 휘도는 4268 cd/m² 이다.

그림 4는 전류밀도의 변화에 따른 백색 OLED의 효율변화를 나타낸 그래프이다. 0.1 mA/cm²의 전류밀도에서 최대의 전류효율 값인 9.5 cd/A의 값을 나타냈고, 이때의 휘도는 13 cd/m²으로 나타났다. 전류밀도가 증가함에 따라 효율이 감소하여 100 mA/cm²일 때 약 4.2 cd/A로 줄어들었다. 전류밀도에 따라 효율이 크게 감소하는 것은 청색인광 도판트인 Firpic의 발광특성에 기인한 것으로

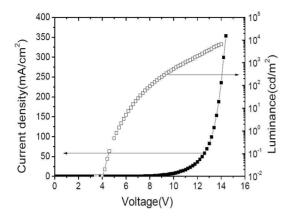


그림 3. 백색 OLED의 전류밀도-전압-휘도 곡선. Fig. 3. Current density-voltage-luminance curves

Fig. 3. Current density-voltage-luminance curves of the white OLED.

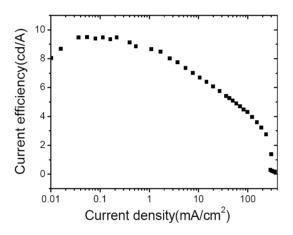


그림 4. 백색 OLED의 전류효율-전류밀도 곡선.

Fig. 4. Current efficiency-current density curves of the white OLED.

보인다. mCP호스트와 인광도판트인 Firpic과의 에너지 전달은 근거리 에너지 전달이기 때문에 도핑농도가 10%로 높다. 높은 전류밀도에서 인광이 포화되며 효율이 저하 되는 것은, 삼중항 상태의 수명이 길기 때문에 높은 전류밀도에서 모든 삼중항여기자 상태가 점유되면 더 이상 여기자가 전달될수 없는 삼중항-삼중항 소멸 현상 때문인 것으로사료된다[7].

그림 5는 백색 OLED의 구동전압에 따른 EL 스 펙트럼의 변화를 나타낸 그래프이다. 470 nm와 500 nm에서 피크가 강하게 나타나는데 이는 FIrpic

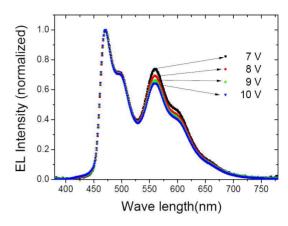
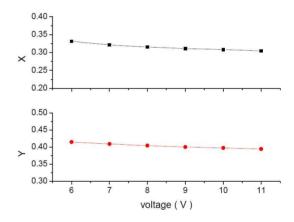



그림 5. 구동전압에 따른 백색 OLED의 전기발광 스펙트럼 변화.

Fig. 5. EL spectra of white OLED at different driving voltages.

그림 6. 구동전압에 따른 백색 OLED의 CIE색좌 표 변화.

Fig. 6. CIE coordinate variation of white OLED as function of driving voltage.

으로부터의 발광피크이며 560 nm 와 600 nm 대역의 피크는 Rubrene에 기인한 발광이다. 560 nm와 600 nm 의 발광피크는 구동전압이 증가함에 따라조금씩 감소하는 것으로 나타났다. 이는 구동전압의 증가에 따라 정공과 전자의 수가 증가하고 따라서 발광층에서의 재결합 비율이 증가하여 호스트에서 도판트로의 에너지 전달은 잘 일어나지만, Rubrene의 도핑농도가 높아 도판트의 농도 소광현상에 의한 것으로 사료된다[8].

그림 6은 인가전압에 따른 색좌표의 변화를 나

타낸 그래프이다. $6 \ V \sim 11 \ V \ E \ O$ 가전압이 증가함에 따라 색좌표의 X값은 0.330에서 $0.304 \ E$ 약간 감소하였고 Y의 값도 역시 0.410에서 0.397로 감소하였다. 구동전압에 대한 색좌표의 변화는 크지 않아, 모든 구동전압에서 백색 발광을 하였다. 구동전압의 증가에 따라 색좌표 값의 감소는 그림 5의 EL 스펙트럼을 살펴보면 알 수 있는데 전압이 증가함에 따라 Rubrene의 피크가 감소하여 나타나는 결과이다.

4. 결 론

본 연구에서는 청색 인광 도펀트와 적색 형광 도펀트를 단일호스트 물질에 도핑 하여 넓은 구동전압에서 색좌표의 변화가 적은 2파장 발광 방식의 백색 OLED소자를 제작하였다. 동작전압은 5.2 V 였고, 1000 cd/m²의 발광을 하는 전압은 11 V 였으며 이때의 전류 밀도는 14.5 mA/cm² 였다. CIE색좌표의값은 (0.30, 0.38)의 백색 OLED 소자를 제작할 수있었다. 제작된 소자의 전류효율은 9.5 cd/A 이고, 소비전력 효율은 5.5 lm/W 를 나타냈으며 이때의전압과 전류밀도는 각각 6 V와 0.1 mA/cm²이었다.

감사의 글

본 연구는 교육과학기술부와 한국산업기술진흥원의 지역혁신인력양성사업으로 수행된 연구결과임.

참고 문헌

[1] 조재영, 오환술, 김태구, 윤석범, "신규 비공액 성 청색발광재료 PPPMA-co-DTPM 공중합체

- 합성을 통한 백색유기발광소자 제작", 전기전 자재료학회논문지, 18권, 7호, p. 641, 2005.
- [2] Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device", J. Appl. Phys., Vol. 90, p. 5048, 2001.
- [3] J. Kido, M. Kimura, and K. Nagai, "Multilayer white light-emitting organic electroluminescent device", Science, Vol. 267, p. 1332, 1995.
- [4] J. Kalinowski, P. Di Marco, M. Cocchi, V. Fattori, and N. Camaioni, "Voltage-tunable-color multilayer organic light emitting diode", Appl. Phys. Lett., Vol. 68, p. 2317, 1996.
- [5] 조재영, 최성진, 윤석범, 오환술, "DPVBi/Alqs: Rubrene 구조를 사용한 2-파장 방식의 백색유 기발광소자의 발광특성에 관한 연구", 전기전 자재료학회논문지, 16권, 7호, p. 616, 2003.
- [6] K. O. Cheon and J. Shinar, "Bright white small molecular organic light-emitting devices based on a red-emitting guest-host layer and blueemitting 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl", Appl. Phys. Lett., Vol. 81, p. 1738, 2002.
- [7] M. A. Baldo, C. Adachi, and S. R. Forrest, "Transient analysis of organic electrophosphorescence. II. Transient analysis of triplettriplet annihilation", Phys. Rev. B, Vol. 62, Issue 16, p. 10967, 2000.
- [8] Ralph H. Young, Ching W. Tang, and Alfred P. Marchetti, "Current-induced fluorescence quenching in organic light-emitting diodes", Appl. Phys. Lett., Vol. 80, Issue 5, p. 874 2002.