• Title/Summary/Keyword: Blood-Compatibility

Search Result 69, Processing Time 0.027 seconds

Blood Compatibility of Hollow Fiber Membranes Treated by Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Lee, Sam-Cheol;Kwon, O-Sung
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was performed in order to develop blood-compatibility biomaterials for use in the blood contacting surfaces and oxygenation membranes of a lung assist device (LAD), important medical device even more useful. Blood compatibility of materials was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than that on untreated fiber membrane, indicating improved blood compatibility. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

Blood Compatibility of Hollow Fiber Membranes Treated with Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Kwon O. S.;Lee S. C.
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.521-527
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was peformed in order to develop blood-compatible biomaterials for use in the blood contacting and oxygenation membranes of a lung-assist device(LAD). Blood compatibility was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than those on polypropylene. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

In Vivo Blood Compatibility of PU-PEO-SO3 as Coating Material for Blood Sac of Left Ventricular Assist Device ( LVAD) (좌심실보조장치의 혈액주머니용 코팅재료로서 PU-PEO-SO3의 in vivo 혈액적합성에 관한 연구)

  • 한동근;김종원
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 1994
  • Sulfonated poly (ethyleneoxide)-grafted polyurethane (PU-PEO-$SO_3$) prepared by bulk modification was coated on a blood sac for electrohydraulic left ventricular assist device (ELVAD) implanted in dogs and its in vivo blood compatibility on shear stress was studied as compared with untreated Po. The effect of the wall shear stress on the protein adsorption unlike platelet adhesion is dependent on the surface characteristics of the material, although less proteins seem to be adsorbed in the region of the high shear stress. The thickness of total proteins adsorbed on PU-PEO-SOJ (400 ${\AA}$) by trans¬mission electron microscopy(TEM) was considerably lower than that of untreated PU(l,000~1,600 ${\AA}$), but PU-PEO-$SO_3$ showed high albumin adsorption, low fibrinogen and IgG adsorption, and low platelet adhesion as compared with untreated PU, suggesting that PU-PEO-$SO_3$ is more in vivo blood compatible. Therefore, it appears that such a blood compatible PU-PEO-$SO_3$ is useful for blood contacting biomaterials including artificial organs.

  • PDF

Blood Compatibility of Artificial Blood-Contacting Surface Seeded with Cultured Bovine Endothelial Cells (소폐동맥 내피세포를 이용한 인조혈액접촉표면의 혈액 접합성)

  • 김원곤;곽영태;유세영
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.80-85
    • /
    • 1993
  • Synthetic and biosynthetic vascular grafts of small diameter have long been considered to be prone to thrombosis, ultimately leading to the complete graft occlusion. Endothelial cell seeding onto synthetic blood-contacting surfaces has been suggested to be an ideal means to solve this problem. This study described a culture method of bovine endothelial cells and evaluated blood-compatibility and seeding efficiency of cultured endothelial cells. Bovine pulmonary artery endothelial cells were harvested enzymatically and grown to confluence on polystyrene culture flask surfaces using established techniques. The identification of endothelial cells was made through the demonstration of expression of factor VIII R:Ag by immunofluorescent technique. To quantitate the effect of improvement in blood-compatibility of viable endothelial cells, endothelial monolayers were exposed to blood containing $\^$111/In-oxine labeled platelets. Viable endothelial monolayers retained less labeled platelets than control surfaces. The Indium-labeled endothelial cells were seeded onto three different blood-contacting surfaces of Dacron vascular graft immobilized in specially equipped wells and incubated for specific time intervals (t=15, 30, 60, 120 minutes). Longer incubation times showed improved cell adherence in collagen-coated and fibrin-coated Dacron vascular graft groups. However in untreated Dacron grafts, no direct relationship was observed between incubation time and endothelial cell seeding efficiency. This may be due to leakage of endothelial cells through porosity of Dacron grafts in this in-vitro experimental condition.

  • PDF

Blood Compatibility of Polyurethane-poly(vinyl alcohol) Polymer Blends (폴리우레탄-폴리비닐알콜 블렌드의 혈액적합성)

  • 김승수;유영미;신재섭;정규식
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • The blood compatibilities of PU/PVA polymer blends with different mixing ratios were evaluated using various methods, such as fibrinogen adsorption, plasma recalcification time, platelet adhesion, whole blood clotting time, and complement activation. In addition, PVA on the surface of the polymer blends was crosslinked by glutaraldehyde to restrain the mobility of PVA molecules for characterizing the effect of PVA in the polymer blends on blood compatibility. The fibrinogen adsorption on the polymer blends decreased with the increase of PVA amount in the polymer blends. The plasma recalcification times of the polymer blends with 10-50 wt% PVA were longer than those of PU, PVA, and polymer blends with higher amount of PVA. The morphological changes and adhesion of platelets on the polymer blends with 30-50 wt% PVA were less than those on the other materials. The blood clotting times and complement activation on the polymer blends with 30-50 wt% PVA were reduced, compared to the other materials. On the other hand, the blood compatibility of the crosslinked polymer blends was relatively decreased, compared to the non-crosslinked ones. According to these experimental results, the blood compatibility of the polymer blends with 30-50 wt% PVA was better than that of the other materials and such a blood compatibility of the polymer blends might be related to the mobility of PVA molecules on the surface.

  • PDF

Bolld Compatibility of Cellulose Membrane with Phosphonolipid Polar Groups

  • Lee, M.K.;Kim, M.S.;Jung, S.K.;Park, S.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.14-16
    • /
    • 1994
  • Requirements for the hemodialysis membrane are excellent permeability for water and solute, mechanical strength and blood compatibility. Many synthetic polymer membranes have been invertigated to raise the efficiency of dialysis, however, 85% of the worldwide hemodialysis still uses cellulose membrane. Though the cellulose membrane has both good permeability and mechenical properties, its blood compatibility needs to be improved for hemodialysis. In this paper, 2-(methacryloyloxy)ethyl-2-(trimethyl ammonium) ethyl phosphate(MTP) and Glycidylmethacrylate(GMA) were grafted on the cellulose membranes to make blood compa- tible membranes.

  • PDF

Grafting and Characterization of Zwitter Ionic Poly(ethylene glycol) on Gold-Coated Nitinol Surface Chemisorbed with L-Cysteine (시스틴으로 화학흡착된 금 코팅 니티놀 표면에 앙쪽성 이온 폴리에틸렌글리콜의 그래프트 및 특성 평가)

  • Shin, Hong-Sub;Park, Kwi-Deok;Kim, Jae-Jin;Kim, Ji-Heung;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.84-90
    • /
    • 2009
  • Nitinol alloy (TiNi) has been widely used in vascular stents. To improve the blood compatibility of Nitinol alloy, its surface was chemically modified in this study. Nitinol was first coated with gold, then chemisorbed with L-cysteine (C/N), and followed by grafting of zwitter ionic poly(ethylene glycol) (PEG) (PEG-$N^+-SO_3{^-}$) to produce TiNi-C/N-PEG-N-S. The zwitter ionic PEG grafted on the Nitinol surface was identified by ATR-FTIR, ESCA and SEM. The hydrophilized surface was proven by the decrease of water contact angle. In addition, from the blood compatibility tests such as protein adsorption, platelet adhesion, and blood coagulation time, the surface-modified TiNi alloy exhibited a better blood compatibility as compared to the untreated Nitinol control. These results indicated a feasibility of synergistic effect of hydrophilic PEG and antithrombotic zwitter ion.

Preparation of blood-compatible polyurethanes by surface modification (표면개질에 의한 혈액적합성 폴리우레탄의 제조)

  • Han, Dong-Keun;Jeong, Seo-Young;Kim, Young-Ha;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.11
    • /
    • pp.61-63
    • /
    • 1990
  • To develop better blood compatibility of commercial polyurethane(PU), PU surface was chemically modified wi th a hydrophobic perfluorocarhon or a hydrophilic polyethylene oxide(PEO) and/or sulfonated groups, respectively. The water contact angle of modified PUs varied from $110^{\circ}$ to $0^{\circ}$. All the modified PUs were more blood compatible than untreated PU. In particular, PEO-sulfonate grafted PUs showed a very enhanced antithrombogenicity due to the synergistic effect of PEO and $SO_3$ groups. Therefore more hydrophobic and hydrophilic PU surfaces are promising for improving the blood compatibility.

  • PDF

Study on blood compatibility of diamond-like carbon and titanium nitride films (Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구)

  • Yun Ju-Young;Bae Jin-Woo;Park Ki-Dong;Goo Hyun-Chul;Park Hyung-Dal;Chung Kwang-Wha
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.165-170
    • /
    • 2005
  • There is an increasing interest in developing novel coating to improve the blood compatibility of medical implants. Diamond-like carbon(DLC) and titanium nitride(TiN) films have been proposed as potential biomedical coatings due to their chemical k physical properties and moderate biocompatibility. To study the correlation between blood compatibility and physical properties of the films, the fibrinogen adsorption on the surface as well as morphology & wettability were investigated. The quantity of fibrinogen adsorption are Tower for TiN than DLC, which correlates with a higher hydrophilicity of TiN film. To reduce the quantity of fibrinogen adsorption on the film, plasma treatment and furnace annealing were performed, respectively. With the use of oxygen plasma and furnace annealing, the amount of fibrinogen adsorption on TiN film was remarkably reduced, while there was no decrease of the quantity with DLC.

Biocompatibility of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi, Gang-Guk;Kim, Hyung-Woo;Kim, Young-Baek;Rhee, Young-Ha
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.540-545
    • /
    • 2005
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced by Alcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.