Browse > Article

Biocompatibility of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16  

Choi, Gang-Guk (Department of Microbiology, Chungnam National University)
Kim, Hyung-Woo (Department of Microbiology, Chungnam National University)
Kim, Young-Baek (Department of Polymer Materials, PaiChai University)
Rhee, Young-Ha (Department of Microbiology, Chungnam National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.6, 2005 , pp. 540-545 More about this Journal
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters, with 3-hydroxyvalerate (3HV) contents ranging from 17 to 60 mol%, were produced by Alcaligenes sp. MT-16, and their biocompatibility evaluated by the growth of Chinese hamster ovary (CHO) cells and the adsorption of blood proteins and platelets onto their film surfaces. The number of CHO cells that adhered to and grew on these films was higher with increasing 3HV content. In contrast, the tendency for blood proteins and platelets to adhere to the copolyester surfaces significantly decreased with increasing 3HV content. Examination of the surface morphology using atomic force microscopy revealed that the surface roughness was an important factor in determining the biocompatibility of theses copolyesters. The results obtained in this study suggest that poly(3HB-co-3HV) copolyesters, with >30 mol% 3HV, may be useful in biocompatible biomedical applications.
Keywords
biocompatibility; blood compatibility; cell compatibility; polyhydroxyalkanoates; poly(3-hydroxybutyrate-co-3-hydroxyvalerate);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Reusch, R. N. (1995) Low molecular weight complexed poly(3-hydroxybutyrate): a dynamic and versatile molecule in vivo. Can. J. Microbiol. 41 Suppl: 50-54   DOI   ScienceOn
2 Rouxhet, L., F. Duhoux, O. Borecky, R. Legras, and Y. J. Schneider (1998) Adsorption of albumin, collagen, and fibronectin on the surface of poly(hydroxybutyrate-hydroxyvalerate) (PHB/HV) and of poly (epsilon-caprolactone) (PCL) films modified by an alkaline hydrolysis and of poly (ethylene terephtalate) (PET) track-etched membranes. J. Biomater. Sci. Polym. Edn. 9: 1279-1304   DOI   ScienceOn
3 Kang, H. O., C. W. Chung, H. W. Kim, Y. B. Kim, and Y. H. Rhee (2001) Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie Van Leeuwenhoek 80: 185-191   DOI   ScienceOn
4 Amiji, M. and K. Park (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J. Biomater. Sci. Polym. Edn. 4: 217-234   DOI   ScienceOn
5 Kottke-Marchant, K., J. M. Anderson, Y. Umemura, and R. E. Marchant (1989) Effect of albumin coating on the in vitro blood compatibility of Dacron$\circR$ arterial prostheses. Biomaterials 10: 147-155   DOI   ScienceOn
6 Zao, K., Y. Deng, and G. Q. Chen (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem. Eng. J. 16: 115-123   DOI   ScienceOn
7 Kim, Y. H., D. K. Han, K. D. Park, and S. H. Kim (2003) Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials 24: 2213-2223   DOI   ScienceOn
8 Doi, Y. (1990) Microbial polyester. VCH pulicher, Inc., New York, NY, USA
9 Kim, S. S., H. W. Kim, S. H. Yuk, S. Y. Oh, P. K. Pak, and H. B. Lee (1995) Blood and cell compatibility of gelatincarrageenan mixtures cross-linked by glutaraldehyde. Biomaterials 17: 813-821   DOI   ScienceOn
10 Zinn, M., B. Witholt, and T. Egli (2001) Occurrence, synthesis, and medical application of bacterial polyhydroxyalkanoate. Adv. Drug. Deliv. Rev. 53: 5-21   DOI   ScienceOn
11 Hahn, S. K., R. Ohri, and C. M. Giachelli (2005) Anticalcification of bovine pericardium for bioprosthetic heart valves after surface modification with hyaluronic acid derivatives. Biotechnol. Bioprocess Eng. 10: 218-224   DOI   ScienceOn
12 Williams, S. F., D. P. Martin, D. M. Horowitz, and O. P. Peoples (1999) PHA applications: addressing the price issue: I. Tissue engineering. Int. J. Biol. Macromol. 25: 111- 121   DOI   ScienceOn
13 Kurano, N., C. Leist, F. Messi, S. Kurano, and A. Fiechter (1990) Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. J. Biotechnol. 15: 113-128   DOI   ScienceOn
14 Fujimoto, K., H. Inoue, and Y. Ikada (1993) Protein adsorption and platelet adhesion onto polyurethane grafted with methoxy-poly(ethylene glycol) methacrylate by plasma technique. J. Biomed. Mater. Res. 27: 1559-1567   DOI   ScienceOn
15 Steinbuchel, A. and T. Lutke-Eversloh (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96   DOI   ScienceOn
16 Choi, G. G., H. W. Kim, and Y. H. Rhee (2004) Enzymatic and non-enzymatic degradation of poly(3-hydroxybutyrate- co-3-hydroxyvalerate) copolyesters produced by Alcaligenes sp. MT-16. J. Microbiol. 42: 346-352
17 Ramsay, B. A., K. Lomaliza, C. Chavarie, B. Dube, P. Bataille, and J. A. Ramsay (1990) Production of poly-($\beta$ - hydroxybutyric-co-$\beta$ -hydroxyvaleric) aicd. Appl. Environ. Microbiol. 56: 2093-2098
18 Lee, J. H., J. W. Lee, G. S. Khang, and H. B. Lee (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18: 351-358   DOI   ScienceOn
19 Tezcaner, A., K. Bugra, and V. Hasirci (2003) Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 24: 4573-4583   DOI   ScienceOn
20 Kim, Y. B., D. Y. Kim, and Y. H. Rhee (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32: 6058-6064   DOI   ScienceOn
21 Feng, L., N. Yoshie, N. Asakawa, and Y. Inoue (2004) Comonomer-unit compositions, physical properties and biodegradability of bacterial copolyhydroxyalkanoates. Macromol. Biosci. 4: 186-198   DOI   ScienceOn
22 Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9: 196-200   DOI   ScienceOn
23 Gogolewski, S., M. Jovanovic, S. M. Perren, J. G. Dillon, and M. K. Hughes (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J. Biomed. Mater. Res. 27: 1135-1148   DOI   ScienceOn
24 Chung, S. H., G. G. Choi, H. W. Kim, and Y. H. Rhee (2001) Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862. J. Microbiol. 39: 79-82
25 Washburn, N. R., K. M. Yamada, C. G. Simon, Jr., S. B. Kennedy, and E. J. Amis (2004) High-throughput investigation of osteoblast response to polymer crystallinity: Influence of nanometer-scale roughness on proliferation. Biomaterials 25: 1215-1224   DOI   ScienceOn
26 Choi, G. G., M. W. Kim, J. Y. Kim, and Y. H. Rhee (2003) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molar fractions of 3-hydroxyvalerate by a threonine-overproducing mutant of Alcaligenes sp. SH-69. Biotechnol. Lett. 25: 665-670   DOI   ScienceOn
27 Hahn, S. K. and A. S. Hoffman (2004) Characterization of biocompatible polyelectrolyte complex multilayer of hyaluronic acid and poly-L-lysine. Biotechnol. Bioprocess Eng. 9: 179-183   DOI   ScienceOn
28 Chung, C. W., H. W. Kim, Y. B. Kim, and Y. H. Rhee (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int. J. Biol. Macromol. 32: 17-22   DOI   ScienceOn