Blood Compatibility of Hollow Fiber Membranes Treated by Plasma Polymerization

플라즈마 중합 처리된 중공사 막의 혈액 적합성

  • Lee, Sam-Cheol (Department of Advanced Materials Engineering, Hanlyo University) ;
  • Kwon, O-Sung (School of Advanced Materials Engineering, Chonbuk National University)
  • 이삼철 (한려대학교 신소재공학과) ;
  • 권오성 (전북대학교 신소재공학부)
  • Published : 2005.09.01

Abstract

Surface modification of polypropylene hollow fiber membranes was performed in order to develop blood-compatibility biomaterials for use in the blood contacting surfaces and oxygenation membranes of a lung assist device (LAD), important medical device even more useful. Blood compatibility of materials was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than that on untreated fiber membrane, indicating improved blood compatibility. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

유용하고 중요한 의료기기인 폐 보조 장치(LAD)의 혈액 접촉 표면과 인공 폐 막에 사용하기 위한 혈액 적합성 생체 재료를 개발하기 위해 폴리프로필렌 중공사 막의 표면 개질을 수행하였다. 재료의 혈액적합성은 항응고 처리된 혈액을 사용하였고 플라스마 응고 형성, 혈소판 접착 및 플라스마 응고 활성화, 그들의 표면 혈전 형성을 평가하여 결정하였다. 실험 결과는 실리콘 코팅 중공사들에 부착한 혈소판 수가 우수한 혈액 적합성을 나타내는 폴리프로필렌에 부착한 혈소판 수보다도 상당히 더 낮았음이 확인되었다. 또한, 상대적으로 플라스마 표면 처리한 폴리프로필렌 중공사 막이 혈액 적합성 평가에서 보체 활성화 억제를 보였음이 확인되었다.

Keywords

References

  1. B. G. Hattler, P. C. Jhonson, P. J. Sawzik, F. D. Saffer, M. Klain, L. W. Lund, G. D. Reeder, F. R. Walters, J. S. Goode, and H. S. Borovetz, 'Respiratory dialysis: A new concept in pulmonary support', ASAIO J, 38, M322 (1992)
  2. B. G. Garber, 'Adult respiratory distress syndrome: A systematic overview of incidence and risk factors', Critical Care Medicine, 24(4), 687 (1996)
  3. S. A. Conrad, J. M. Eggerstedt, V. F. Morris, and M. D. Romero, 'Intravenacaval membrane oxygenation and carbon dioxide removal in severe acute respiratory failure', Chest, 107(6), 1689 (1995)
  4. T. P. Hooker, M. D. Hammond, and S. Allen, 'Adult respiratory distress syndrome: A review for the clinician', J. Am. Osteopathic Assoc., 92(7), 886 (1992)
  5. H. J. Eash, H. M. Jones, B. G. Hattler, and W. J. Federspiel, 'Evaluation of plasma resistant hollow fiber membranes for artificial lungs', ASAIO J, 50, 491 (2004)
  6. A. K. Zimmermann, H. Aebert, M. Freitag, M. Husseini, G. Ziemer, and H. P. Wendel, 'Hemocompatibility of PMEA coated oxygenators used for extracoppreal circulation procedures', ASAIO J., 50, 193 (2004) https://doi.org/10.1097/01.MAT.0000123638.41808.59
  7. D. Wang, S. K. Alpard, C. Savage, H. N. Yamani, D. J. Deyo, S. Nemser, and J. B. Zwischenberger, 'Short term performance evaluation of a perfluorocopolymer coated gas exchanger for arteriovenous $Co_2$ removal', ASAIO J., 49, 673 (2003)
  8. J. D. Mortensen, 'An intravenacaval blood gas exchange (IVCBGE) device: a preliminary' report', Trans. Am. Soc. Artif. Intern. Organs, 33, 570 (1987)
  9. B. Bagley, A. Bagley, J. Henrie, C. Froerer, J. Brohamer, J. Burkart, and J. D. Mortensen, 'Quantitative gas transfer into and out of circulating venous blood by means of an intravenacaval oxygenator', ASAIO Transactions, 37, M413 (1991)
  10. J. D. Mortensen, U. S. Patent, 4, 583, 969, April (1986)
  11. B. G. Hattler, G. D. Reeder, P. J. Sawzik, L. W. Lund, F. R. Walters, A. S. Shah, J. Rawleigh, J. S. Goode, M. Klain, and H. Borovetz, 'Development of an intravenous membrane oxygenator: Enhanced intravenous gas exchange through convective mixing of blood around hollow fiber membranes', Artif. Organs, 18(11), 806 (1994)
  12. 권석기, '당뇨병 진단을 위한 다층 젤라틴 진단막 에 관한 연구(2): 혈액속의 첨가물이 글루코우즈의 확산조절 속도에 미치는 영향', 멤브레인, 9, 240 (1999)
  13. R. I. Lee and P. D. White, 'A clinical study of the coagulation time of blood', J. Am. Med. Sci., 145, 495 (1913)
  14. D. K. Han, S. Y. Jeong, Y. H. Kim, B. G. Min, and H. I. Cho, 'Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes', J. Biomed. Mater. Res., 25, 561 (1991) https://doi.org/10.1002/jbm.820250806
  15. Y. Ito and Y. Imanishi, 'Blood compatibility of polyurethanes', CRC critical reviews in biocompatibility, 5, 45 (1989)