• Title/Summary/Keyword: Biotechnology industry

Search Result 1,898, Processing Time 0.046 seconds

Anti-oxidant and Anti-microbial Activities of Seungmakalgeuntang (복합처방인 승마갈근탕(升摩葛根湯)의 항산화 및 항균효과)

  • Lee, Jin-Young;Bae, Ho-Jung;Park, Tae-Soon;Kim, Tae-Wan;Moon, Doo-Hwan;Kwon, O-Jun;Son, Jun-Ho;Lee, Chang-Eon;Park, Gun-Hye;Kim, Han-Hyuk;An, Bong-Jeun
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Biological activities such as anti-oxidative and anti-microbial of the Seungmakalgeuntang, a traditional prescription, were evaluated. The electron donating ability of water, ethanol, supercritical fluid and 1,3-butylene glycol extract of Seungmakalgeuntang showed more than 50% at a 100 ppm concentration. At a 1000 ppm concentration, the superoxide dismutase-like activities of ethanol and supercritical fluid extract of Seungmakalgeuntang showed less than 50%. xanthine oxidase inhibition effect of the supercritical fluid extract showed more than 70% at a 1,000 ppm concentration, which was higher than vitamin C. From the measurement on lipid oxidation, the $Fe^{2+}$ chelating abilities of the supercritical fluid extract of Seungmakalgeuntang was more than 60% at a 100 ppm concentration. Also the $Cu^{2+}$ chelating abilities of supercritical fluid extract Seungmkalgeuntang was showed more than 60% at a 500 ppm concentration. Clear zones formed by sample against the human skin-resident microflora such as Staphylococcus epidermidis, Staphylococcus aureus and Propionibacterium acne of ethanol and supercritical fluid extract of Seungmakalgeuntang showed the highest among all the extracts tested using a 4mg/disc. The minimum inhibitory concentration (MIC) against both S. epidermidis and S. aureus showed 2,500 ppm in the extract of the supercritical fluid.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Improvement of Proliferation Capacity of Non-adapted CHO Cells Subcultured Using Serum Free Media in Long-term Culture (무혈청 배지에서 계대배양한 비적응 CHO(Chinese Hamster Ovary) 세포의 증식력 개선에 관한 연구)

  • Lee, Seung-Sun;Lee, Jin-Sung;Byun, Soon-Hyu;Park, Hong-Woo;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2006
  • Animal cell culture industry has a large market and an exponential growth rate among biological industry field. Chines hamster ovary(CHO) cells are the most widely used cell lines for recombinant protein production. They can avoid infection from polio, herpes, hepatitis B, HIV, measles, adenovirus and etc. Moreover it is easy to transfection recombinant genes and possible to suspension culture. Serum free media is one of the most important factor of protein production. Because serum has problems. Serum is not defined the contents until now, it has a number of proteins, lipids, carbohydrates and unknown molecules that cause of risk involve in infection and high cost of product purification. CHO cell line cultured using serum free media were the basis of a very successful method to produce(glyco-)protein in mammalian cells, which are then used as pharmaceutical products. Also, the low protein content of the developed medium facilitates downstream processing and product purification. But non-adapted CHO cells have a limit of proliferation cultured using serum free media and it takes very long time to adapt non-adapted cells to serum free media. There are a number of causes of a limit of proliferation using serum free media. Absence of growth factors and growth stimulating molecules is a major factor of the reasons. It makes growth signals and moves cell cycle. And increase of cellular stress is another reason. It induces increase of intraceullar ROS concentration. The purpose of this study is about improvement of proliferation capacity of non-adapted CHO cells cultured using serum free media without adaptation process.

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Effect of Silicate on Creeping Bentgrass Growth of Green at the Golf Course during Summer in Korea (규산염의 시비가 크리핑 벤트그래스의 여름철 생육에 미치는 영향)

  • Lee, Jae-Pil;Yoo, Tae-Young;Moon, Se-Jong;Ham, Suon-Kyu;Kim, Doo-Hwan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • This study was conducted to figure out the effect of silicate as growth stimulator on growth of 'Pencrosss' creeping bentgrass. Creeping bentgrass(Agrostis palustris cv. 'Pencross') at the nursery of Sinwon Country Club was used. Silicate was applied at the concentration of 0, $200{\times}$, $500{\times}$, $1.000{\times}$. Polt size was 1 by 2 meter and there were three replications with completely randomized design(CRD). Creeping bentgrass growth was evaluated with visual turf grass quality, root length and No. of tiller density(ea/$cm^2$). Results of this study are as followings; 1. Average root length with silicate was $1.5{\sim}1.9cm$ longer than control. Especially, Root length of silicate was $7{\sim}8cm$ in summer. 2. Tiller density with silicate was $l8{\sim}22ea/cm^2$, $0.4{\sim}2.l$ less than control. But there was no significant difference. 3. Visual turfgrass quality with silicate was $5.0{\sim}8.3$, $0.3{\sim}1.5$ higher than control. But there was no significant difference. In conclusion, silicate might be grown as root growth stimulator of creeping bentgrass during summer in Korea. However, this study was conducted under one year. Accordingly, in-depth experiment should be done over several years.

Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor (갈색거저리(Tenebrio Molitor)의 항산화능과 Raw 264.7 대식세포의 항염증 효과)

  • Yu, Jae-Myo;Jang, Jae-Yoon;Kim, Hyeon-Jeong;Cho, Yong-Hun;Kim, Dong-in;Kwon, O-jun;Cho, Yeong-Je;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.890-898
    • /
    • 2016
  • The purpose of this paper is to investigate potential anti-inflammatory and anti-oxidant effects of Tenebrio molitor. Macrophage cell response by outside stimulation leads expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), $interleukin-1{\beta}$ ($IL-1{\beta}$), and trigger expression of genes which are affected by inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), resulting in formation of inflammatory factors like nitric oxide (NO) and Prostaglandin $E_2$ (PGE2). Cell viability was determined by MTT assay. In order to investigate anti-inflammatory agents, the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO in RAW 264.7 cells were examined. T. Molitor significantly decreased the production of NO in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. As a result, the levels of protein such as $PGE_2$, iNOS, COX-2 and MARKs were significantly reduced compared to non-treated group in T. Molitor water extract (TDW) treated group. Also, antioxidant effect of T. Molitor were investigated using DPPH, ABTS+ and superoxide anion radical scavenging activity tests in cell-free system. Antioxidant activity of T. molitor was found low in the DPPH radical scavenging test while high in the ABTS+ and superoxide anion radical scavenging activity tests. These results show that TDW could be an effective anti-pro-inflammatory and anti-oxidant agent.

Anti-inflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide (Lipopolysaccharide로 활성화된 RAW 264.7 세포에서 적하수오(Polygonum multiflorum) 추출물의 항염증 효과 검증)

  • Lee, Eunsu;Kim, Hyeongjeong;Yu, Jae-Myo;Cho, Yong-Hun;Kim, Dong-In;Shin, Yuhyeon;Cho, Yeongje;Kwon, O-Jun;An, Bongjeon
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.740-746
    • /
    • 2014
  • The anti-inflammatory effects of Polygonum multiflorum water extracts (PMWs) and Polygonum multiflorum 70 % ethanol extracts(PMEs) were investigated using lipopolysaccharide-induce by inflammatory response. The inhibitory effects of PMWs and PMEs on the production of nitric oxide (NO) and pro - inflammatory cytokines in LPS - activated Raw 264.7 cells were investigated. The effects were examined after reducing production of Nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels. RAW 264.7 cells were cultured with LPS ($1{\mu}g/mL$) in the presence or absence of PMWs and PMEs for 24 h to determine their NO, iNOS, COX-2 levels. During the entire experimental period 10, 25, 50 and $100{\mu}g/mL$ of PMWs and PMEs showed no cytotoxicity. At these concentrations, PMWs and PMEs concentration dependently reduced the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL-$1{\beta}$). PMWs and PMEs were inhibited the activittion of iNOS, COX-2 by 89%, 54%, 91% and 57% respectively, at $100{\mu}g/mL$. These results indicate that PMWs and PMEs significantly reduces the effect of oxidative and inflammatory cytokines.

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.

Monitoring on Physicochemical Properties of Liriope platyphylla by the Use of Four Dimensional Response Surface (4차원 반응표면분석을 통한 맥문동의 이화학적 특성 모니터링)

  • Lee, Gee-Dong;Kim, Jung-Ok;Son, Jun-Ho;Kim, Hak-Yoon
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.560-568
    • /
    • 2012
  • Four dimensional response surface methodology was used to monitor the extraction conditions and predict the optimum extraction conditions on physicochemical properties of Liriope platyphylla. Maximum yield of total soluble solid was 66.02% into range of 35.06~65.70%, and maximum extraction conditions were 16.86 mL/g in ratio of solvent to sample, $99.55^{\circ}C$ in extraction temperature and 3.20 hr in extraction time. Maximum extraction conditions of total phenolics were 18.78 mL/g, $97.09^{\circ}C$ and 3.71 hr. Maximum content of crude saponin was 6.51% into range of 2.22~6.21 %, and maximum extraction conditions were 21.33 mL/g, $95.49^{\circ}C$ and 3.00 hr. Maximum content of reducing sugar was 6.75% into range of 2.43~6.51%, and maximum extraction conditions were 22.93 mL/g, $89.64^{\circ}C$ and 3.75 hr. Electron donating ability was maximized in 16.74 mL/g, $99.63^{\circ}C$ and 3.16 hr. The range of optimum conditions gained by the superimposed four dimensional response surfaces on total soluble solid, crude saponin and reducing sugar of Liriope platyphylla was 15~23 mL/g, 92~$100^{\circ}C$ and 2.4~5.0 hr. And total soluble solid, total phenolics, crude saponin, reducing sugar, browning color intensity and electron donating ability at the given conditions(20 mL/g, $100^{\circ}C$, 3 hr) within the range of optimum conditions were 65.75%, 1.30 mg/g, 6.33%, 5.93%, 0.11 and 10.52%, respectively.

Healthy Functional Food Properties of Phenolic Compounds Isolated from Ulmus pumila (유근피(Ulmus pumila)로부터 분리한 phenol성 물질의 건강기능식품 활성)

  • Kim, Kyung-Bum;Jo, Bun-Sung;Park, Hye-Jin;Park, Ki-Tae;An, Bong-Jeun;Ahn, Dong-Hyun;Kim, Myung-Uk;Chae, Jung-Woo;Cho, Young-Je
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.909-918
    • /
    • 2012
  • The phenolic compounds which were extracted with 70% ethanol from Ulmus pumila for 12 hr were the highest as $17.9{\pm}1.0\;mg/g$. DPPH scavenging activity of 70% ethanol extracts was also the highest as $89.5{\pm}1.9%$ and it was confirmed to be high as 80% over in both of water and 70% ethanol extracts containing $50{\mu}g/mL$ over phenolic concentration. ABTS radical cation decolorization activities of water and 70% ethanol extracts were higher as $96.8{\pm}2.9%$, antioxidant protection factor (PF) was 2.0 PF in 70% ethanol and showed higher activities in both of water and 70% ethanol extracts containing $200{\mu}g/mL$ phenolic concentration as 2.5 PF than BHA. TBARs of 70% ethanol extracts was $86.5{\pm}4.6%$, it showed high anti-oxidative activity in $50{\sim}200{\mu}g/mL$ phenolic concentrations of water and 70% ethanol extracts as 80% over. The angiotensin converting enzyme (ACE) inhibitory activity of Ulmus pumila extracts against hypertension was 77.4% and 90.6% in water and 70% ethanol extracts of $200{\mu}g/mL$ phenolic concentration. Xanthine oxidase inhibitory activity of Ulmus pumila extracts for anti-gout effect was not observed in water extracts, but it showed 30% inhibitory activity in 70% ethanol extracts, and 48.1% at $200{\mu}g/mL$ phenolics concentration.