• Title/Summary/Keyword: Biosensors

Search Result 296, Processing Time 0.021 seconds

Absorption analysis of streptavidin-biotin complexes using AFM (AFM을 이용한 스트렙타비딘-바이오틴 단백질 복합체의 흡착 분석)

  • Park, Jee-Eun;Kim, Dong-Sun;Choi, Ho-Jin;Shin, Jang-Kyoo;Kim, Pan-Kyeom;Lim, Geun-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.237-244
    • /
    • 2006
  • Atomic force microscope (AFM) has become a common tool for the structural and physical studies of biological macromolecules, mainly because it provides the ability to perform experiments with samples in a buffer solution. In this study, structure of proteins and nucleic acids has been studied in their physiological environment that allows native intermolecular complexes to be formed. Cr and Au were deposited on p-Si (100) substrate by thermal evaporation method in sequence with the thickness of $200{\AA}$ and $500{\AA}$, respectively, since Au is adequate for immobilizing biomolecules by forming a self-assembled monolayer (SAM) with semiconductor-based biosensors. The SAM, streptavidin and biotin interacted each other with their specific binding energy and their adsorption was analyzed using the Bio-AFM both in a solution and under air environment. A silicon nitride tip was used as a contact tip of Bio-AFM measurement in a solution and an antimony doped silicon tip as a tapping tip under air environment. Actual morphology could also be obtained by 3-dimensional AFM images. The length and agglomerate size of biomolecules was measured in stages. Furthermore, $R_{a}$ (average of surface roughness) and $R_{ms}$ (mean square of surface roughness) and surface density for the adsorbed surface were also calculated from the AFM image.

User Authentication and Secure Data Communication Based on Mobile Phone for Medical Sensor Network (의료 센서 네트워크에서 휴대폰을 이용한 사용자 인증 및 안전한 데이터 통신 방안)

  • Kim, Jee-Hyun;Doh, In-Shil;Park, Jung-Min;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.19C no.1
    • /
    • pp.19-28
    • /
    • 2012
  • Wireless sensor network provides services anytime and anywhere they are requested. Especially, medical sensor network based on biosensors is applied a lot to biotechnology and medical engineering. In medical sensor network, people can make their health checked at home free from temporal and spatial constraints. In ubiquitous healthcare environment, people can get instant help even in the emergency, and in hospital, patients can be taken care of efficiently. In this environment, health and life related data are delivered, and the privacy and security of personal data are very important. In this paper, we propose user authentication and data communication mechanism in two modes, normal and urgent situation using cellular phone. Through our proposal, data can be transferred in quick and secure manner.

Photopolymerization and Properties of PCL-Based Biodegradable Molecularly Imprinted Polymers (PCL 기반 생분해성 분자 날인 고분자의 광중합 및 물성)

  • Kim, Sun-Hui;Lee, Kyung-Soo;Kim, Yong-Hoon;Choi, Woo-Jin;Kim, Beom-Soo;Kim, Eung-Kook;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Biodegradable molecularly imprinted polymers (MIPs) can be applied in the biomedical area of biosensors, drug delivery, etc. Therefore, in this study, biodegradable theophylline MIPs were synthesized via photopolymerization using a poly $(\varepsilon-caprolactone)$ (PCL) macromer as a cross-linker and their physical properties were investigated. The yield for the synthesis of the PCL macromer with terminal acrylate groups was ca. 78 mol%. The products were characterized by the combination of FT-IR and $^1H-NMR$ spectroscopic analyses. UV/Visible spectroscopic analysis for removing and rebinding theophylline was performed by monitoring the theophylline concentration in the solution. In vitro biodegradation tests of the theophylline MIPs performed in phosphate buffered saline (PBS) solution at $37^{\circ}C$ showed good biodegradability of the MIPs.

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

Detection of Food-Grade Hydrogen Peroxide by HRP-Biocomposite Modified Biosensors

  • Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A new amperometric biosensor has been developed for the detection of hydrogen peroxide ($H_2O_2$). The sensor was fabricated through the one-step deposition of a biocomposite layer onto a glassy carbon electrode at neutral pH. The biocomposite, as a $H_2O_2$ sensing element, was prepared by the electrochemical deposition of a homogeneous mixture of graphene oxide, aniline, and horseradish peroxidase. The experimental results clearly demonstrated of that the sensor possessed high electrocatalytic activity and responded to $H_2O_2$ with a stable and rapid manners. Scanning electron microscopy, cyclic voltammetry, and amperometry were performed to optimize the characteristics of the sensor and to evaluate its sensing chemistry. The sensor exhibited a linear response to $H_2O_2$ in the range of 10 to $500{\mu}M$ concentrations, and its detection limit was calculated to be $1.3{\mu}M$. The proposed sensing-chemistry strategy and the sensor format were simple, cost-effective, and feasible for analysis of "food-grade $H_2O_2$" in food samples.

Analysis of the Optimal Location of Wearable Biosensor Arrays for Individual Combat System Considering Both Monitoring Accuracy and Operational Robustness (모니터링 정확도와 운용 강건성을 고려한 개인전투체계용 착용형 생체센서 어레이의 최적 위치 분석)

  • Ha, Seulki;Park, Sangheon;Lim, Hyeoncheol;Baek, Seung Ho;Kim, Do-Kyoung;Yoon, Sang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.287-297
    • /
    • 2019
  • Monitoring for the physiological state of a solider is essential to the realization of individual combat system. Despite all efforts over the last decades, there is no report to point out the optimal location of the wearable biosensors considering both monitoring accuracy and operational robustness. In response, we quantitatively measure body temperature and heartrate from 34 body parts using 2 kinds of biosensor arrays, each of which consists of a thermocouple(TC) sensor and either a photoplethysmography(PPG) sensor or an electrocardiography(ECG) sensor. The optimal location is determined by scoring each body part in terms of signal intensity, convenience in use, placement durability, and activity impedance. The measurement leads to finding the optimal location of wearable biosensor arrays. Thumb and chest are identified as best body parts for TC/PPG sensors and TC/ECG sensors, respectively. The findings will contribute to the successful development of individual combat system.

Real-time Highly Sensitive Measurement of Myocardial Infarction Biomarkers Using Silicon-based Ellipsometric Biosensors (실리콘 기반 타원편광계식 바이오센서를 이용한 심근경색 생체표지자의 실시간 초고감도 진단 농도 측정)

  • Min, Yoon Gi;Cho, Hyun Mo;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.59-66
    • /
    • 2019
  • We report highly sensitive detection of myocardial infarction biomarkers, such as myoglobin and cTnI, within several hundred seconds using a rotating-analyzer ellipsometer and a biosensor with biochips fabricated on a $SiO_2$-coated tilted silicon substrate. We choose the running buffer to be pure phosphate-buffered saline (PBS) or 10% mixed human serum. When we choose the running buffer to be pure PBS, we obtain diagnostic densities of pure myocardial infarction biomarkers of up to 1 ng/ml and 5 pg/ml respectively. Meanwhile, when we use PBS with 10% human serum, the measured densities of myoglobin and cTnI were up to 1 ng/mL and 1 pg/mL respectively. The measured diagnostic densities are less than 1/15 and 1/80 (in cases of myoglobin and cTnI respectively) of those referenced by the World Health Organization.

Encapsulation of ZnSe Quantum Dots within Silica by Water-in-oil Microemulsions (마이크로에멀전을 이용한 실리카에 담지된 ZnSe 양자점 제조)

  • Lee, Areum;Kim, Ji Hyeon;Yoo, In Sang;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.328-331
    • /
    • 2011
  • ZnSe quantum dots (QDs) were prepared by employing water-containing Dioctyl sodium sulfosuccinate (AOT) reversed micelles (microemulsions) and the silica-encapsulated ZnSe QDs were obtained by a direct injection of tetraethyl orthosilicate (TEOS) into the microemulsion system. When the QDs were coated by silica, well-defined spherical shapes were formed and the average size of the QDs was near 7 nm. In addition, the photoluminescence (PL) efficiency of the QDs was reduced from 8.0 to 1.1% as they were encapsulated by silica. However, the solid layers of the silica-encapsulated ZnSe QDs on gold surfaces showed the excellent photostability. In particular, they are cadmium free and thus, less toxic. Moreover, the present method does not require a hot reaction temperature or extremely toxic H2Se gas as a Se precursor. Accordingly, the method can be a safer and more economical process for producing silica-encapsulated ZnSe QDs, which may be a potential media for biosensors.

Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots (양자점 기반 다중 바이오마커 검출법의 연구동향)

  • Kim, Yerin;Choi, Yu Rim;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.451-458
    • /
    • 2022
  • Semiconductor quantum dots (QDs) are optical probes with excellent fluorescence properties. Therefore, they have been applied to various bio-medical imaging techniques and biosensors. Due to the unique optical characteristics of wide absorption and narrow fluorescence energy bands, multiple types of signals can be generated by the combination of fluorescence wavelengths from different QDs, which enables the simultaneous detection of more than two biomarkers. In this review, the advantages and applications of QDs and QD nanobeads (QBs) in multiple biomarker assays were described, and new developments or improvements in multiplexed biomarker detection techniques were summarized. In particular, recent reports were summarized, focusing on the design strategies in immunoassay construction and signal transducing materials for fluorescence-linked immunosorbent assays using QDs and immunochromatographic assays using QBs. New detection platforms will be developed for early diagnosis of diseases and other fields if multiplexed detection technologies of excellent accuracy and sensitivity are combined with artificial intelligence algorithms.

Link Energy Efficiency Routing Strategy for Optimizing Energy Consumption of WBAN (WBAN의 에너지 소비 최적화를 위한 링크 에너지 효율 라우팅 전략)

  • Lee, Jung-jae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2022
  • IoT technology that utilizes wireless body area networks (WBAN) and biosensors is an important field in the health industry to minimize resources and monitor patients. In order to integrate IoT and WBAN, a cooperative protocol that constitutes WBAN's limited sensor nodes and rapid routing for efficient data transmission is required. In this paper we propose an we propose an energy efficient and cooperative link energy-efficient routing strategy(LEERS) to solve the problems of redundant data transmission detection and limited network sensor lifetime extention. The proposed scheme considers the hop count node congestion level towards the residual energy sink and bandwidth and parameters. In addition, by determining the path cost function and providing effective multi-hop routing, it is shown that the existing method is improved in terms of residual energy and throughput