Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.328

Encapsulation of ZnSe Quantum Dots within Silica by Water-in-oil Microemulsions  

Lee, Areum (Department of Chemical & Biological Engineering, Kyungwon University)
Kim, Ji Hyeon (Department of Chemical & Biological Engineering, Kyungwon University)
Yoo, In Sang (Department of Chemical & Biological Engineering, Kyungwon University)
Park, Sang Joon (Department of Chemical & Biological Engineering, Kyungwon University)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 328-331 More about this Journal
Abstract
ZnSe quantum dots (QDs) were prepared by employing water-containing Dioctyl sodium sulfosuccinate (AOT) reversed micelles (microemulsions) and the silica-encapsulated ZnSe QDs were obtained by a direct injection of tetraethyl orthosilicate (TEOS) into the microemulsion system. When the QDs were coated by silica, well-defined spherical shapes were formed and the average size of the QDs was near 7 nm. In addition, the photoluminescence (PL) efficiency of the QDs was reduced from 8.0 to 1.1% as they were encapsulated by silica. However, the solid layers of the silica-encapsulated ZnSe QDs on gold surfaces showed the excellent photostability. In particular, they are cadmium free and thus, less toxic. Moreover, the present method does not require a hot reaction temperature or extremely toxic H2Se gas as a Se precursor. Accordingly, the method can be a safer and more economical process for producing silica-encapsulated ZnSe QDs, which may be a potential media for biosensors.
Keywords
ZnSe; quantum dot; microemulsion; silica encapsulation; photostability;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 J. J. Andrade, A. G. Brasil Jr., P. M. A. Farias, A. Fontes, and B. S. Santos, Microelectron. J., 40, 641 (2009).   DOI   ScienceOn
2 N. Gaponik, S. K. Poznyak, N. P. Osipovich, A. Shavel, and A. Eychmuller, Microchim. Acta, 160, 327 (2008).   DOI
3 Y.-W. Jun, J.-E. Koo, and J. Cheon, Chem. Commun., 1243 (2000).
4 M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B, 102, 3655 (1998).   DOI   ScienceOn
5 P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, and A. Pron, Mater. Chem. Phys., 84, 10 (2004).   DOI   ScienceOn
6 H.-S. Chen, B. Lo, J.-Y. Hwang, G.-Y. Chang, C.-M. Chen, S.-J. Tasi, and S.-J. J. Wang, J. Phys. Chem. B, 108, 17119 (2004).   DOI   ScienceOn
7 N. Chestnoy, R. Hull, and L. E. Brus, J. Chem. Phys., 85, 2237 (1986).   DOI
8 A. Shavel, N. Gaponik, and A. Eychmuller, J. Phys. Chem. B, 108, 5905 (2004).   DOI   ScienceOn
9 H. S Kim, J. S. Kim, and S. J. Park, Jpn. J. Appl. Phys., 49, 06GJ08 (2010).   DOI
10 S. Cavaliere-Jaricot, M. Darbandil, E. Kucur, and T. Nann, Microchim Acta, 160, 375 (2008).   DOI
11 L. M. Liz-Marza'n, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329 (1996).   DOI   ScienceOn
12 M. Schierhorn and L. M. Liz-Marza'n, Nano Lett., 2, 13 (2002).   DOI   ScienceOn
13 M. A. Correa-Duarte, M. Giersig, and L. M. Liz-Marza'n, Chem. Phys. Lett., 286, 497 (1998).   DOI   ScienceOn
14 C. L. Li and N. Murase, Langmuir, 20, 1 (2004).   DOI   ScienceOn
15 R. F. Kubin and A. N. Fletcher, J. Luminescence, 27, 455 (1983).
16 T. Selvan, C. Li, M. Ando, and N. Murase, Chem. Lett., 33, 434 (2004).   DOI   ScienceOn
17 G. Shumei, L. Ying, L. Jian, and N. Xiaowu, Acta Photonica Sinica, 32, 261 (2003).
18 B. Zhang, X. Gong, L. Hao, J. Cheng, Y. Han, and J. Chang, Nanotechnology, 19, 465604 (2008).   DOI   ScienceOn