• Title/Summary/Keyword: Biomolecule

Search Result 151, Processing Time 0.033 seconds

biomolecule DNA detection using Microchip with amperometry (전류법을 이용한 생체물질 DNA 검출 마이크로칩)

  • Joo, Gi-Sung;Jha, Sandeep Kumar;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1553_1554
    • /
    • 2009
  • 마이크로칩에서의 생체물질 분석에 있어서 재현성은 매우 중요한 사항이다. 이전부터 많은 연구자들에 의해서 분석시 재현성을 향상시키고자 많은 연구가 선행되었다. 재현성을 향상시킬 수 있는 한 방안으로 겔 전기영동이 이용되고 있다. 본 연구에서도 겔 전기영동을 마이크로칩에 접목시켜 재현성을 향상시키는 실험을 진행하였다. DNA 시료로 100bp부터 1500bp 길이의 DNA 단편들을 사용한 결과 인산완충식 염수 (PBS)만을 사용하였을 경우보다 인산완충식염수(PBS)와 5% 폴리아크릴아미드 겔 (5% polyacrylamide)과 같이 사용하였을 경우 더 향상된 재현성을 확보하였다.

  • PDF

Concentration/Purification Technologies: Multi-Functionalities of Nanostructures in Biosensing Fields

  • Son, Sang Jun;Min, Junhong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.87-87
    • /
    • 2013
  • Sample concentration and purification processes are essential in the bio-analytical and pharmaceutical fields because most bio samples or media are extremely sophisticated. To concentrate and purify specific substances, passive membrane type filters have been utilized, which is driven by size or charge differences between target and others. The traditional and representative method to identify nucleic acid sequences in the complex biosample is gel electrophoresis, which has been worked by size and net charge of molecules. The adsorption phenomena have been also utilized to concentrate and purify biomolecules. This adsorption of biomolecule can be controlled under specific salts and surfaces as well as surface area. To utilize the differences of physical properties of molecules or bio-targets such as virus, bacteria, and cells, the nanotechnologies can be introduced in target concentration, purification, and isolation processes. In here, I'd like to briefly survey typical examples of nanobiotechnologies which are introduced in sample treatment. Also I specifically demonstrate two different simple techniques to concentrate and detect bacteria from the samples using multifunctional silica nanotube (SNT).

  • PDF

Photosensitized oxidative damage of human serum albumin by water-soluble dichlorophosphorus(V) tetraphenylporphyrin

  • Ouyang, Dongyan;Hirakawa, Kazutaka
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.41-44
    • /
    • 2015
  • Biomolecular photo-damaging activity of a water-soluble cationic porphyrin was examined using human serum albumin (HSA), a water-soluble protein as a target biomolecule model by a fluorometry. Dichlorophosphorus(V) tetraphenylporphyrin ($Cl_2P(V)TPP$), was synthesized and used as a photosensitizer. This porphyrin could bind to HSA and cause the photosensitized oxidation of HSA through the singlet oxygen generation and the oxidative photo-induced electron transfer (ET). Near infrared emission spectroscopy demonstrated the photosensitized singlet oxygen generation by this porphyrin. Decrement of the fluorescence lifetime of $Cl_2P(V)TPP$ by HSA supported the ET mechanism. Furthermore, the estimated Gibb's energy indicated that the ET mechanism is possible in the terms of energy. Because oxygen concentration in cancer cell is relatively low, ET mechanism is considered to be advantageous for photosensitizer of photodynamic therapy.

Preparation of an Amino Acid Based DTPA as a BFCA for Radioimmunotherapy

  • Choi, Kang-hyuk;Hong, Young-Don;Pyun, Mi-Sun;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1194-1198
    • /
    • 2006
  • For the purpose of developing more effective chelating agents, we have synthesized a diethylene triamine pentaacetic acid(DTPA) analogue by using an amino acid. S-(N-Boc-aminophenyl)-Cys(t-Bu4-DTPA) methylester was prepared in 6 steps with total yield of 47.9%. For the sake of introducing a biomolecule to the DTPA derivative, a selective hydrolysis was performed with 3 M HCl/Ethylacetate = 1 : 3 ($25{^{\circ}C}$, 30 min, vigorous stirring). $^{166}Ho$-Cys-DTPA and $^{166}Ho$-Biotin-Cys-DTPA were prepared by mixing $^{166}Ho$ with DTPA derivatives at room temp in a HCl solution (pH = 5) and the radiochemical stabilities (> 99%) were maintained for over 6 hrs in vitro.

$^{19}F$ MR Imaging of 5-FU Metabolism in Mice

  • Chaejoon Cheong;Lee, Seung-C.;Jae-G. Seo;Kim, Sung W.;Lee, Chulhyun;Kim, Chul S.;Taegyun Yang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.110-117
    • /
    • 2001
  • $^{19}$ F imaging of mice was carried out. For $^{19}$ F imaging, 5-flouro-uracil (5-FU) was injected into a mouse and in vivo detection of the catabolism of 5-FU to a-fluoro-P-alanine (FBAL) was carried out. The chemical shift selective (CHESS) imaging technique was employed. The 19F spectra and images give temporal and spatial information of the metabolism for 5-FU in mice.

  • PDF

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap;Lee, Cheolho
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.85-92
    • /
    • 2018
  • Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Nanoplasmonics: An Enabling Platform for Integrated Photonics and Biosensing

  • Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Nanoplasmonics is a developing field that offers attractive optical, electrical, and thermal properties for a wide range of potential applications. Based on the compelling characteristics of this field, researchers have shed light on the possibilities of integrated photonics and biosensing platforms using nanoplasmonic principles. Single and unique nanostructures with plasmons can act as individual transducers that convert desired information into measurable and readable signals. In this review, we will discuss nanoplasmonic sensors, especially those in relation to photodetectors for future optical interconnects, and bioinformation sensing platforms based on nanoplasmonics, thus providing a viable approach by which to create sensors corresponding to target applications. In addition, we also discuss scalable fabrication processes for the creation of unconventional nanoplasmonic devices, which will enable next-generation plasmonic devices for wearable, flexible, and biocompatible systems.

The Nobel Prize in Chemistry 2017: High-Resolution Cryo-Electron Microscopy

  • Chung, Jae-Hee;Kim, Ho Min
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.218-222
    • /
    • 2017
  • The 2017 Nobel Prize in Chemistry was awarded to the following three pioneers: Dr. Joachim Frank, Dr. Jacques Dubochet, and Dr. Richard Henderson. They all contributed to the development of a Cryo-electron microscopy (EM) technique for determining the high-resolution structures of biomolecules in solution, particularly without crystal and with much less amount of biomolecules than X-ray crystallography. In this brief commentary, we address the major advances made by these three Nobel laureates as well as the current status and future prospects of this Cryo-EM technique.

The Magnetic Mobility of Biomolecule Sanals of the Lymphatic Primo Vascular System

  • Noh, Young-Il;Hong, Ye-Ji;Shin, Jun-Young;Rhee, Jin-Kyu;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.188-191
    • /
    • 2013
  • The magnetic properties for sanal's mobility inside of the lymphatic primo vascular system, the so-called Kyungrak (or meridian) system, are investigated under a low static magnetic field with the anatomy technology and optical microscope. One sanal with a size of 1 ${\mu}m$ under microscope selected and separated from the primo vessels of the primo vascular system are observed in rabbits' lymphatic vessels around abdominal aorta and placed in PBS solution with petridish. The moving displacement of sanal versus the measuring time of 20 Oe below a magnetic field of 80 Oe is stronger in dominanting dependence according to the x-direction than y-direction.