DOI QR코드

DOI QR Code

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection

  • Hong, Sungyeap (Department of Chemical and Biological Engineering, Seokyeong University) ;
  • Lee, Cheolho (Department of Chemical and Biological Engineering, Seokyeong University)
  • Received : 2017.08.22
  • Accepted : 2018.01.18
  • Published : 2018.04.01

Abstract

Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.

Keywords

References

  1. Adegoke, O., Seo, M., Kato, T., Kawahito, S. and Park, E. Y. 2016. An ultrasensitive $SiO_2$-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus. Biosens. Bioelectron. 86:135-142. https://doi.org/10.1016/j.bios.2016.06.027
  2. Algar, W. R., Tavares, A. J. and Krull, U. J. 2010. A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 673:1-25. https://doi.org/10.1016/j.aca.2010.05.026
  3. Baller, M. K., Lang, H. P., Fritz, J., Gerber, C., Gimzewski, J. K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F. M., Fornaro, P., Meyer, E. and Guntherodt, H. J. 2000. A cantilever array-based artificial nose. Ultramicroscopy 82:1-9. https://doi.org/10.1016/S0304-3991(99)00123-0
  4. Batchelor-McAuley, C., Wildgoose, G. G. and Compton, R. G. 2009. The physicochemical aspects of DNA sensing using electrochemical methods. Biosens. Bioelectron. 24:3183-3190. https://doi.org/10.1016/j.bios.2009.01.045
  5. Berg, R. H. and Beachy, R. N. 2008. Fluorescent protein applications in plants. Methods Cell Biol. 85:153-177.
  6. Candresse, T., Lot, H., German-Retana, S., Krause-Sakate, R., Thomas, J., Souche, S., Delaunay, T., Lanneau, M. and le Gall, O. 2007. Analysis of the serological variability of lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology. J. Gen. Virol. 88:2605-2610. https://doi.org/10.1099/vir.0.82980-0
  7. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805. https://doi.org/10.1126/science.8303295
  8. Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M. and Nie, S. 2002. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13:40-46. https://doi.org/10.1016/S0958-1669(02)00282-3
  9. Chudakov, D. M., Matz, M. V., Lukyanov, S. and Lukyanov, K. A. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90:1103-1163. https://doi.org/10.1152/physrev.00038.2009
  10. Dhama, K., Karthik, K., Chakraborty, S., Tiwari, R., Kapoor, S., Kumar, A. and Thomas, P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak. J. Biol. Sci. 17:151-166. https://doi.org/10.3923/pjbs.2014.151.166
  11. Dickert, F. L., Hayden, O., Bindeus, R., Mann, K. J., Blaas, D. and Waigmann, E. 2004. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal. Bioanal. Chem. 378:1929-1934. https://doi.org/10.1007/s00216-004-2521-5
  12. Dubs, M. C., Altschuh, D. and van Regenmortel, M. H. V. 1992. Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol. Lett. 31:59-64. https://doi.org/10.1016/0165-2478(92)90011-C
  13. Eun, A. J., Huang, L., Chew, F., Li, S. F. and Wong, S. 2002. Detection of two orchid viruses using quartz crystal microbalance-based DNA biosensors. Phytopathology 92:654-658. https://doi.org/10.1094/PHYTO.2002.92.6.654
  14. Florschutz, K., Schroter, A., Schmieder, S., Chen, W., Schweizer, P., Sonntag, F., Danz, N., Baronian, K. and Kunze, G. 2013. 'Phytochip': on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J. Virol. Methods 189:80-86. https://doi.org/10.1016/j.jviromet.2013.01.008
  15. Gerdes, H. and Kaether, C. 1996. Green fluorescent protein: applications in cell biology. FEBS Lett. 389:44-47. https://doi.org/10.1016/0014-5793(96)00586-8
  16. Gutierrez-Aguirre, I., Hodnik, V., Glais, L., Rupar, M., Jacquot, E., Anderluh, G. and Ravnikar, M. 2014. Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies. Anal. Biochem. 447:74-81. https://doi.org/10.1016/j.ab.2013.10.032
  17. Ishikawa-Ankerhold, H. C., Ankerhold, R. and Drummen, G. P. C. 2012. Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047-4132. https://doi.org/10.3390/molecules17044047
  18. Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M. and Seifalian, A. M. 2007. Biological applications of quantum dots. Biomaterials 28:4717-4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
  19. Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N. and Nie, S. 2013. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6:143-162. https://doi.org/10.1146/annurev-anchem-060908-155136
  20. Khater, M., de la Escosura-Muniz, A. and Merkoci, A. 2017. Biosensors for plant pathogen detection. Biosens. Bioelectron. 93:72-86. https://doi.org/10.1016/j.bios.2016.09.091
  21. Kuang, H., Zhao, Y., Ma, W., Xua, L., Wang, L. and Xu, C. 2011. Recent developments in analytical applications of quantum dots. Trends Analyt. Chem. 30:1620-1636. https://doi.org/10.1016/j.trac.2011.04.022
  22. Lautner, G., Balogh, Z., Bardoczy, V., Meszaros, T. and Gyurcsanyi, R. E. 2010. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918-926. https://doi.org/10.1039/b922829b
  23. Lin, H. Y., Huang, C. H., Lu, S. H., Kuo, I. T. and Chau, L. K. 2014. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioelectron. 51:371-378. https://doi.org/10.1016/j.bios.2013.08.009
  24. Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M. and Bertolini, E. 2009. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr. Issues Mol. Biol. 11:13-46.
  25. Malecka, K., Michalczuk, L., Radecka, H. and Radecki1, J. 2014. Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sensors 14:18611-18624. https://doi.org/10.3390/s141018611
  26. Martin-Palma, R. J., Manso, M. and Torres-Costa, V. 2009. Optical biosensors based on semiconductor nanostructures. Sensors 9:5149-5172. https://doi.org/10.3390/s90705149
  27. McClellan, M. S., Domier, L. L. and Bailey, R. C. 2012. Labelfree virus detection using silicon photonic microring resonators. Biosens. Bioelectron. 31:388-392. https://doi.org/10.1016/j.bios.2011.10.056
  28. Medintz, I. L., Sapsford, K. E., Konnert, J. H., Chatterji, A., Lin, T., Johnson, J. E. and Mattoussi, H. 2005. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501-5510. https://doi.org/10.1021/la0468287
  29. Mello, L. D. and Kubota, L. T. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 77:237-256. https://doi.org/10.1016/S0308-8146(02)00104-8
  30. Misteli, T. and Spector, D. L. 1997. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol. 15:961-964. https://doi.org/10.1038/nbt1097-961
  31. Monosik, R., Stredansky, M. and Sturdik, E. 2012. Biosensors-classification, characterization and new trends. Acta Chim. Slov. 5:109-120.
  32. Moreau, A. L. D., Janissen, R., Santos, C. A., Peroni, L. A., Stach-Machado, D. R., de Souza, A. A., de Souza, A. P. and Cotta, M. A. 2012. Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosens. Bioelectron. 36:62-68. https://doi.org/10.1016/j.bios.2012.03.038
  33. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63. https://doi.org/10.1093/nar/28.12.e63
  34. Ohashia, K. and Osaka, T. 2017. Industrialization trial of a biosensor technology. ECS Trans. 75:1-9.
  35. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. and Nann, T. 2008. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5:763-775. https://doi.org/10.1038/nmeth.1248
  36. Rodriguez-Mozaz, S., de Alda, M. J. L. and Barcelo, D. 2006. Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386:1025-1041. https://doi.org/10.1007/s00216-006-0574-3
  37. Safarnejad, M. R., Samiee, F., Tabatabie, M. and Mohsenifar, A. 2017. Development of quantum dot-based nanobiosensors against citrus tristeza virus (CTV). Sensors & Transducers J. 213:54-60.
  38. Sakurai, A. and Shibasaki, F. 2012. Updated values for molecular diagnosis for highly pathogenic avian influenza virus. Viruses 4:1235-1257. https://doi.org/10.3390/v4081235
  39. Scheller, F. W., Wollenberger, U., Warsinke, A. and Lisdat, F. 2001. Research and development in biosensors. Curr. Opin. Biotechnol. 12:35-40. https://doi.org/10.1016/S0958-1669(00)00169-5
  40. Shamsipur, M., Nasirian, V., Mansouri, K., Barati, A., Veisi-Raygani, A. and Kashanian, S. 2017. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal. 136:140-147. https://doi.org/10.1016/j.jpba.2017.01.002
  41. Sharma, A., Rao, K. V., Kamboj, D. V., Gaur, R., Upadhyay, S. and Shaik, M. 2015. Relative efficiency of zinc sulfide (ZnS) quantum dots (QDs) based electrochemical and fluorescence immunoassay for the detection of Staphylococcal enterotoxin B (SEB). Biotechnol. Rep. (Amst.) 6:129-136.
  42. Shen, J., Zhu, Y., Yang, X. and Li, C. 2012. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48:3686-3699. https://doi.org/10.1039/c2cc00110a
  43. Shen, W. and Gao, Z. 2015. Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube. Biosens. Bioelectron. 65:327-332. https://doi.org/10.1016/j.bios.2014.10.060
  44. Shojaei, T. R., Salleh, M. A. M., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M. 2016a. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 169:216-222. https://doi.org/10.1016/j.saa.2016.06.052
  45. Shojaei, T. R., Salleh, M. A. M., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M. 2016b. Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Mikrochim. Acta 183:2277-2287. https://doi.org/10.1007/s00604-016-1867-7
  46. Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Maneroe, G., Gauf, V., Gutman, S. I., Hayes, D. F., Kortei, B., Landers, J. L. and Larson, D. 2006. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21:1932-1942. https://doi.org/10.1016/j.bios.2006.01.006
  47. Sun, W., Zhong, J., Qin, P. and Jiao, K. 2008. Electrochemical biosensor for the detection of cauliflower mosaic virus 35S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Anal. Biochem. 377:115-119. https://doi.org/10.1016/j.ab.2008.03.027
  48. Tereshchenko, A., Fedorenko, V., Smyntyna, V., Konup, I., Konup, A., Eriksson, M., Yakimova, R., Ramanavicius, A., Balme, S. and Bechelany, M. 2017. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens. Bioelectron. 92:763-769. https://doi.org/10.1016/j.bios.2016.09.071
  49. Turner, A. P. F. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:3184-3196. https://doi.org/10.1039/c3cs35528d
  50. van Dorst, B., Mehta, J., Bekaert, K., Rouah-Martin, E., de Coen, W., Dubruel, P., Blust, R. and Robbens, J. 2010. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26:1178-1194. https://doi.org/10.1016/j.bios.2010.07.033
  51. Vinayaka, A. C. and Thakur, M. S. 2010. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal. Bioanal. Chem. 397:1445-1455. https://doi.org/10.1007/s00216-010-3683-y
  52. Vinayaka, A. C. and Thakur, M. S. 2011. Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions. Bioconjug. Chem. 22:968-975. https://doi.org/10.1021/bc200034a
  53. Wegner, K. D. and Hildebrandt, N. 2015. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44:4792-4834. https://doi.org/10.1039/C4CS00532E
  54. Yuqing, M., Jianguo, G. and Jianrong, C. 2003. Ion sensitive field effect transducer-based biosensors. Biotechnol. Adv. 21:527-534. https://doi.org/10.1016/S0734-9750(03)00103-4
  55. Zeng, C., Huang, X., Xu, J., Li, G., Ma, J., Ji, H. F., Zhu, S. and Chen, H. 2013. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal. Biochem. 440:18-22. https://doi.org/10.1016/j.ab.2013.04.026
  56. Zhang, C. and Johnson, L. W. 2006. Quantum-dot-based nanosensor for RRE IIB RNA-rev peptide interaction assay. J. Am. Chem. Soc. 128:5324-5325. https://doi.org/10.1021/ja060537y
  57. Zhang, H., Feng, G., Guo, Y. and Zhou, D. 2013a. Robust and specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor. Nanoscale 5:10307-10315. https://doi.org/10.1039/c3nr02897f
  58. Zhang, M., Chen, W., Chen, X., Zhang, Y., Lin, X., Wu, Z. and Li, M. 2013b. Multiplex immunoassays of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J. Nanomater. 2013:317437.
  59. Zimmer, M. 2002. Green Fluorescent Protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102:759-782. https://doi.org/10.1021/cr010142r