Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.1.7

Nanoplasmonics: An Enabling Platform for Integrated Photonics and Biosensing  

Lee, Jihye (School of Integrated Technology, Yonsei University)
Yeo, Jong-Souk (School of Integrated Technology, Yonsei University)
Publication Information
Applied Science and Convergence Technology / v.25, no.1, 2016 , pp. 7-14 More about this Journal
Abstract
Nanoplasmonics is a developing field that offers attractive optical, electrical, and thermal properties for a wide range of potential applications. Based on the compelling characteristics of this field, researchers have shed light on the possibilities of integrated photonics and biosensing platforms using nanoplasmonic principles. Single and unique nanostructures with plasmons can act as individual transducers that convert desired information into measurable and readable signals. In this review, we will discuss nanoplasmonic sensors, especially those in relation to photodetectors for future optical interconnects, and bioinformation sensing platforms based on nanoplasmonics, thus providing a viable approach by which to create sensors corresponding to target applications. In addition, we also discuss scalable fabrication processes for the creation of unconventional nanoplasmonic devices, which will enable next-generation plasmonic devices for wearable, flexible, and biocompatible systems.
Keywords
Plasmonics; Integrated photonics; Plasmon coupling effect; Biomolecule sensing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement vol. 1 (CRC press, Florida 2014), pp. I-7-I-9.
2 J. Fraden, Handbook of modern sensors: physics, designs, and applications (Springer Science & Business Media, San Diego, 2004), pp. 37-119.
3 X. Chen, Z. Guo, G.-M. Yang, J. Li, M.-Q. Li, J.-H. Liu, and X.-J. Huang, Mater. Today, 13, 28 (2010).
4 J. Wang, Analyst, 130, 421 (2005).   DOI
5 I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake, Biosens. Bioelectron, 20, 1652 (2005).   DOI
6 P. F. Davies, J. Vasc. Surg. 13, 729 (1991).
7 C. J. Murphy, Anal. Chem. 74, 520A (2002).
8 J. M. Lopez-Higuera, Handbook of optical fibre sensing technology (John Wiley & Sons, Chichester, 2002)
9 A. Yalcin, K. C. Popat, J. C. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006).   DOI
10 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Chem. Rev. 112, 1105 (2011).
11 S. C. Rashleigh, Opt. Lett. 5, 392 (1980).   DOI
12 H. Kaplan, Practical applications of infrared thermal sensing and imaging equipment vol. 75 (SPIE press,Washington, 2007) pp. 9-29.
13 M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, Sensors, 10, 4342-4372 (2010).   DOI
14 P. Han and X.-C. Zhang, Appl. Phys. Lett. 73, 3049 (1998).   DOI
15 B. MacCraith, V. Ruddy, C. Potter, B. O'Kelly, and J. McGilp, Electron. Lett. 27, 1247 (1991).   DOI
16 R. Yotter and D. M. Wilson, IEEE Sens. J. 3, 288 (2003).   DOI
17 O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).   DOI
18 S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, New York, 2007), pp. 65-80.
19 H. A. Atwater, Sci. Am. 296, 56 (2007).   DOI
20 H. Duan, A. I. Fernandez-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, Nano lett. 12, 1683 (2012).   DOI
21 M. I. Stockman, Phys. Today, 64, 39 (2011).
22 G. Baffou and R. Quidant, Chem. Soc. Rev. 43, 3898 (2014).   DOI
23 A. Dmitriev, Nanoplasmonic sensors (Springer Science & Business Media, New York, 2012) pp. 105-126.
24 Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. -K. Zhou, X. Wang, C. Jin, and J. Wang, Nat. Commun. 4, 2381 (2013).   DOI
25 A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8, 867 (2009).   DOI
26 T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, Sensors, 11, 10907 (2011).   DOI
27 H. Liao, C. L. Nehl, and J. H. Hafner, Nanomedicine, 1, 201 (2006).   DOI
28 A. J. Gormley, N. Larson, S. Sadekar, R. Robinson, A. Ray, and H. Ghandehari, Nano today, 7, 158 (2012).   DOI
29 J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, J. Phys. Chem. C, 113, 12090 (2009).
30 A. Alu and N. Engheta, J. Opt. A-Pure. Appl. Op. 10, 093002 (2008).   DOI
31 Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, Nanoscale, 6, 282 (2014).   DOI
32 A. Fatima, I. Mehra, and N. K. Nishchal, Proceedings of the 2014 International Conference on Fibre Optics and Photonics, (Kharagpur India, 13-16 December 2014) p. S5A. 52.
33 R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today, 9, 20 (2006).
34 J. Dionne, H. Lezec, and H. A. Atwater, Nano lett. 6, 1928 (2006).   DOI
35 M. L. Brongersma, R. Zia, and J. Schuller, Appl. Phys. A, 89, 221 (2007).   DOI
36 V. K. Valev, A. V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O. A. Aktsipetrov, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verviest, small, 7, 2573 (2011).   DOI
37 S. A. Maier, Nature Photon. 2, 460 (2008).   DOI
38 P. Bai, M.-X. Gu, X.-C. Wei, and E.-P. Li, Opt. Express, 17, 24349, (2009).   DOI
39 Y. Yang, Q. Li, and M. Qiu, Scientific reports, 6, 19490 (2016).   DOI
40 E. Ozbay, science, 311, 189 (2006).   DOI
41 A. Alu and N. Engheta, Nature Photon. 2, 307 (2008).   DOI
42 D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Nano lett. 4, 957 (2004).   DOI
43 E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett., 89, 093120 (2006).   DOI
44 P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nature Photon. 3, 283 (2009).   DOI
45 A. Crut, P. Maioli, N. Del Fatti, and F. Vallee, Chem. Soc. Rev. 43, 3921 (2014).   DOI
46 J. H. Son, B. Cho, S. Hong, S. H. Lee, O. Hoxha, A. J. Haack, and L. P. Lee, Light. Sci. Appl. 4, e280 (2015).   DOI
47 A. Glass, P. F. Liao, D. Olson, and L. Humphrey, Opt. Lett. 7, 575 (1982).   DOI
48 A. Sellai, Nucl. Instr. Meth. Phys. Res. A. 504, 170 (2003).   DOI
49 J. Hetterich, G. Bastian, N. Gippius, S. Tikhodeev, G. Von Plessen, and U. Lemmer, IEEE J. Quant. Electron. 43, 855 (2007).   DOI
50 M. Rahman, A. Karakashian, S. Broude, and D. Gladden, Appl. Opt. 30, 2935 (1991).   DOI
51 T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, Jpn. J. Appl. Phys. 44, L364 (2005).   DOI
52 P. Berini, Laser Photon. Rev. 8, 197 (2014).   DOI
53 J.-H. Kim and J.-S. Yeo, Nano lett. 15, 2291 (2015).   DOI
54 J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Small, 11, 2392 (2015).   DOI
55 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).   DOI
56 Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano, 6, 74 (2011).
57 A. Ashimoto, C. Chen, I. Bakker, and J. Slots, "Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions," Oral. Microbiol. Immun. 11, 266 (1996).   DOI
58 P. Grauballe, B. Vestergaard, A. Meyling, and J. Genner, J. Med. Virol. 7, 29 (1981).   DOI
59 D. Muir, S. Varon, and M. Manthorpe, Anal. Biochem. 185, 377 (1990).   DOI
60 F. Girosi, S. S. Olmsted, E. Keeler, D. C. H. Burgess, Y.-W. Lim, J. E. Aledort, M. E. Rafael, K. A. Ricci, R. Boer, L. Hilborne, K. P. Derose, M. V. Shea, C. M. Beighley, C. A. Dahl, and J. Wasserman, Nature, 444, 3 (2006).   DOI
61 O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, Hatice altug, Nano letters, 2016. DOI: 10.1021/acs.nanolett.5 b05316
62 T. S. Hauck, S. Giri, Y. Gao, and W. C. Chan, Adv. Drug Deliv. Rev. 62, 438 (2010).   DOI
63 X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanomedicine, 2, 681 (2007).   DOI
64 S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano lett. 7, 1338 (2007).   DOI
65 K.-L. Lee, M.-L. You, C.-H. Tsai, E.-H. Lin, S.-Y. Hsieh, M.-H. Ho, J. -C. Hsu, and P. -K. Wei, Biosensors and Bioelectronics, 75, 88 (2016).   DOI
66 J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).   DOI
67 V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008).   DOI
68 M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzan, and L. M. Lechuga, ACS Nano, 4, 349 (2009).
69 B. Sepulveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz- Marzan, Nano Today, 4, 244 (2009).   DOI
70 M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).   DOI
71 I. Choi and Y. Choi, IEEE J. Sel. Top. Quantum Electron. 18, 1110 (2012).   DOI
72 J. R. L. Guerreiro, M. Frederiksen, V. E. Bochenkov, V. De Freitas, M. G. Ferreira Sales, and D. S. Sutherland, ACS Nano, 8, 7958 (2014).   DOI
73 S. Lee, K. M. Mayer, and J. H. Hafner, Anal. chem. 81, 4450 (2009).   DOI
74 C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, Nano lett. 12, 1648 (2012).   DOI
75 K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, ACS Nano, 2, 687 (2008).   DOI
76 S. Chen, M. Svedendahl, R. P. V. Duyne, and M. Kall, Nano lett. 11, 1826 (2011).   DOI
77 P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010).   DOI
78 X. Qian, X. Zhou, and S. Nie, J. Am. Chem. Soc. 130, 14934 (2008).   DOI
79 C. Tabor, D. Van Haute, and M. A. El-Sayed, ACS Nano, 3, 3670 (2009).   DOI
80 J. H. Yoon and S. Yoon, Langmuir, 29, 14772 (2013).   DOI
81 P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Plasmonics, 2, 107 (2007).   DOI
82 J. Park and J.-S. Yeo, Chem. Commun. 50, 1366, (2014).   DOI
83 A. A. Tseng, Small, 1, 924 (2005).   DOI
84 S. Matsui, T. Kaito, J.-i. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, J. Vac. Sci. Technol. B, 18, 3181 (2000).   DOI
85 C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Mannin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000).   DOI
86 H. Seyringer, B. Funfstuck, and F. Schaffler, The Society of Microelectronics-Annual Report 1999
87 B. Wu and A. Kumar, J. Vac. Sci. Technol. B, 25, 1743 (2007).   DOI
88 Q. Li, J. Zheng, and Z. Liu, Langmuir, 19, 166 (2003).   DOI
89 S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, ACS Nano, 5, 897 (2011).   DOI
90 S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Adv. Mater. 23, 4422 (2011).   DOI
91 J. A. Rogers and R. G. Nuzzo, Mater. Today, 8, 50 (2005).
92 C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001).   DOI
93 H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zach, and B. Kasemo, Adv. Mater. 19, 4297 (2007).   DOI
94 Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, Nano lett. 8, 20 (2008).   DOI
95 D. Y. Khang, H. Yoon, and H. H. Lee, Adv. Mater. 13, 749 (2001).   DOI
96 S. J. Barcelo, A. Kim, W. Wu, and Z. Li, ACS Nano, 6, 6446 (2012).   DOI
97 J. Lee, J. Park, J. Y. Lee, and J. S. Yeo, Adv. Sci. 2, 1500121, (2015).   DOI
98 G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013).   DOI
99 N. Kinsey, M. Ferrera, V. Shalaev, and A. Boltasseva, J. Opt. Soc. Am. 32, 121 (2015).   DOI
100 Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, J. Nanophotonics, 9, 093791 (2015).   DOI
101 J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, ACS Nano, 8, 9035 (2014).   DOI
102 P. Chen, M. T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T. T. Cornell, T. P. Shanley, and K. Kurabayashi, ACS Nano, 9, 4173 (2015).   DOI
103 X. Wang, Y. Cui, and J. Irudayaraj, ACS Nano, 9, 11924 (2015).   DOI