Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.4.218

The Nobel Prize in Chemistry 2017: High-Resolution Cryo-Electron Microscopy  

Chung, Jae-Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Ho Min (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
Applied Microscopy / v.47, no.4, 2017 , pp. 218-222 More about this Journal
Abstract
The 2017 Nobel Prize in Chemistry was awarded to the following three pioneers: Dr. Joachim Frank, Dr. Jacques Dubochet, and Dr. Richard Henderson. They all contributed to the development of a Cryo-electron microscopy (EM) technique for determining the high-resolution structures of biomolecules in solution, particularly without crystal and with much less amount of biomolecules than X-ray crystallography. In this brief commentary, we address the major advances made by these three Nobel laureates as well as the current status and future prospects of this Cryo-EM technique.
Keywords
High-resolution Cryo-electron microscopy; Nobel Prize; Biomolecule structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bai X C, McMullan G, and Scheres S H (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49-57.   DOI
2 Beck M and Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825-837.   DOI
3 Beck M and Glavy J S (2014) Toward understanding the structure of the vertebrate nuclear pore complex. Nucleus 5, 119-123.   DOI
4 Beck M, Lucic V, Forster F, Baumeister W, and Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryoelectron tomography. Nature 449, 611.   DOI
5 Brenner S and Horne R W (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34, 103-110.   DOI
6 Bui K H, von Appen A, DiGuilio A L, Ori A, Sparks L, Mackmull M T, Bock T, Hagen W, Andres-Pons A, Glavy J S, and Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233-1243.   DOI
7 Danev R, Buijsse B, Khoshouei M, Plitzko J M, and Baumeister W (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl. Acad. Sci. U S A 111, 15635-15640.   DOI
8 de Boer P, Hoogenboom J P, and Giepmans B N G (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat. Meth. 12, 503-513.   DOI
9 De Rosier D J and Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130-134.   DOI
10 Dodonova S O, Aderhold P, Kopp J, Ganeva I, Rohling S, Hagen W J H, Sinning I, Wieland F, and Briggs J A G (2017) 9A structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. Elife 6.
11 Adrian M, Dubochet J, Lepault J, and McDowall A W (1984) Cryo-electron microscopy of viruses. Nature 308, 32-36.   DOI
12 Asano S, Engel B D, and Baumeister W (2016) In situ Cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 428, 332-343.   DOI
13 Dodonova S O, Diestelkoetter-Bachert P, von Appen A, Hagen W J H, Beck R, Beck M, Wieland F, and Briggs J A G (2015) A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195.   DOI
14 Dubochet J, Adrian M, Chang J J, Homo J C, Lepault J, McDowall A W, and Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129-228.   DOI
15 Dubochet J and McDowall A W (1981) Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3-RP4.
16 Frank J, Shimkin B, and Dowse H (1981) SPIDER - a modular software system for electron image processing. Ultramicroscopy 6, 343-358.   DOI
17 Frank J and van Heel M (1982) Correspondence analysis of aligned images of biological particles. J. Mol. Biol. 161, 134-137.   DOI
18 Henderson R, Baldwin J M, Ceska T A, Zemlin F, Beckmann E, and Downing K H (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-929.   DOI
19 Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117-125.   DOI
20 Hall C E, Jakus M A, and Schmitt F O (1945) The structure of certain muscle fibrils as revealed by the use of electron stains. J. Appl. Phys. 16, 459-465.   DOI
21 Nickell S, Kofler C, Leis A P, and Baumeister W (2006) A visual approach to proteomics. Nat. Rev. Mol. Cell Biol. 7, 225.   DOI
22 Henderson R and Unwin P N (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28-32.   DOI
23 Huxley H E and Zubay G (1961) Preferential staining of nucleic acidcontaining structures for electron microscopy. J. Biophys. Biochem. Cytol. 11, 273-296.   DOI
24 Jeong H, Lee S G, Kweon H S, and Hyun J (2017) Facility for high resolution cryo-electron microscopy of biological macromolecules at Korea Basic Science Institute. Biodesign 5, 96-102.
25 Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A, and Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590.   DOI
26 Mattei S, Glass B, Hagen W J H, Krausslich H G, and Briggs J A G (2016) The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354, 1434.   DOI
27 Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, Beckmann R, and Forster F (2015) Structure of the native Sec61 protein-conducting channel. Nat. Commun. 6, 1632-1643.
28 Radermacher M, Wagenknecht T, Verschoor A, and Frank J (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc. 141, RP1-2.   DOI
29 Rigort A, Bauerlein F J B, Villa E, Eibauer M, Laugks T, Baumeister W, and Plitzko J M (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl. Acad. Sci. 109, 4449-4454.   DOI
30 Scheres S H (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530.   DOI
31 Shaikh T R, Gao H, Baxter W T, Asturias F J, Boisset N, Leith A, and Frank J (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941-1974.   DOI
32 Scheres S H, Nunez-Ramirez R, Sorzano C O, Carazo J M, and Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat. Protoc. 3, 977-990.   DOI
33 Schur F K M, Hagen W J H, Rumlova M, Ruml T, Muller B, Krausslich H G, and Briggs J A G (2014) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. Nature 517, 505.
34 Schur F K M, Obr M, Hagen W J H, Wan W, Jakobi A J, Kirkpatrick J M, Sachse C, Krausslich H G, and Briggs J A G (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506.   DOI
35 Tang G, Peng L, Baldwin P R, Mann D S, Jiang W, Rees I, and Ludtke S J (2007) EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38-46.   DOI
36 Taylor K A and Glaeser R M (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036-1037.   DOI
37 van Heel M and Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187-194.
38 van Heel M, Harauz G, Orlova E V, Schmidt R, and Schatz M (1996) A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17-24.   DOI
39 Villa E, Schaffer M, Plitzko J M, and Baumeister W (2013) Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23, 771-777.   DOI