Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.08.2017.0184

The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection  

Hong, Sungyeap (Department of Chemical and Biological Engineering, Seokyeong University)
Lee, Cheolho (Department of Chemical and Biological Engineering, Seokyeong University)
Publication Information
The Plant Pathology Journal / v.34, no.2, 2018 , pp. 85-92 More about this Journal
Abstract
Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.
Keywords
detection of plant virus; interface particle; quantum dot-based biosensors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N. and Nie, S. 2013. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6:143-162.   DOI
2 Khater, M., de la Escosura-Muniz, A. and Merkoci, A. 2017. Biosensors for plant pathogen detection. Biosens. Bioelectron. 93:72-86.   DOI
3 Kuang, H., Zhao, Y., Ma, W., Xua, L., Wang, L. and Xu, C. 2011. Recent developments in analytical applications of quantum dots. Trends Analyt. Chem. 30:1620-1636.   DOI
4 Lautner, G., Balogh, Z., Bardoczy, V., Meszaros, T. and Gyurcsanyi, R. E. 2010. Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918-926.   DOI
5 Lin, H. Y., Huang, C. H., Lu, S. H., Kuo, I. T. and Chau, L. K. 2014. Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioelectron. 51:371-378.   DOI
6 Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M. and Bertolini, E. 2009. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr. Issues Mol. Biol. 11:13-46.
7 Malecka, K., Michalczuk, L., Radecka, H. and Radecki1, J. 2014. Ion-channel genosensor for the detection of specific DNA sequences derived from plum pox virus in plant extracts. Sensors 14:18611-18624.   DOI
8 Martin-Palma, R. J., Manso, M. and Torres-Costa, V. 2009. Optical biosensors based on semiconductor nanostructures. Sensors 9:5149-5172.   DOI
9 McClellan, M. S., Domier, L. L. and Bailey, R. C. 2012. Labelfree virus detection using silicon photonic microring resonators. Biosens. Bioelectron. 31:388-392.   DOI
10 Medintz, I. L., Sapsford, K. E., Konnert, J. H., Chatterji, A., Lin, T., Johnson, J. E. and Mattoussi, H. 2005. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501-5510.   DOI
11 Moreau, A. L. D., Janissen, R., Santos, C. A., Peroni, L. A., Stach-Machado, D. R., de Souza, A. A., de Souza, A. P. and Cotta, M. A. 2012. Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosens. Bioelectron. 36:62-68.   DOI
12 Mello, L. D. and Kubota, L. T. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem. 77:237-256.   DOI
13 Misteli, T. and Spector, D. L. 1997. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol. 15:961-964.   DOI
14 Monosik, R., Stredansky, M. and Sturdik, E. 2012. Biosensors-classification, characterization and new trends. Acta Chim. Slov. 5:109-120.
15 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63.   DOI
16 Ohashia, K. and Osaka, T. 2017. Industrialization trial of a biosensor technology. ECS Trans. 75:1-9.
17 Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. and Nann, T. 2008. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5:763-775.   DOI
18 Rodriguez-Mozaz, S., de Alda, M. J. L. and Barcelo, D. 2006. Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386:1025-1041.   DOI
19 Sakurai, A. and Shibasaki, F. 2012. Updated values for molecular diagnosis for highly pathogenic avian influenza virus. Viruses 4:1235-1257.   DOI
20 Safarnejad, M. R., Samiee, F., Tabatabie, M. and Mohsenifar, A. 2017. Development of quantum dot-based nanobiosensors against citrus tristeza virus (CTV). Sensors & Transducers J. 213:54-60.
21 Shen, J., Zhu, Y., Yang, X. and Li, C. 2012. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48:3686-3699.   DOI
22 Scheller, F. W., Wollenberger, U., Warsinke, A. and Lisdat, F. 2001. Research and development in biosensors. Curr. Opin. Biotechnol. 12:35-40.   DOI
23 Shamsipur, M., Nasirian, V., Mansouri, K., Barati, A., Veisi-Raygani, A. and Kashanian, S. 2017. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal. 136:140-147.   DOI
24 Sharma, A., Rao, K. V., Kamboj, D. V., Gaur, R., Upadhyay, S. and Shaik, M. 2015. Relative efficiency of zinc sulfide (ZnS) quantum dots (QDs) based electrochemical and fluorescence immunoassay for the detection of Staphylococcal enterotoxin B (SEB). Biotechnol. Rep. (Amst.) 6:129-136.
25 Shen, W. and Gao, Z. 2015. Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube. Biosens. Bioelectron. 65:327-332.   DOI
26 Shojaei, T. R., Salleh, M. A. M., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M. 2016a. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 169:216-222.   DOI
27 Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Maneroe, G., Gauf, V., Gutman, S. I., Hayes, D. F., Kortei, B., Landers, J. L. and Larson, D. 2006. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 21:1932-1942.   DOI
28 Shojaei, T. R., Salleh, M. A. M., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M. 2016b. Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Mikrochim. Acta 183:2277-2287.   DOI
29 Adegoke, O., Seo, M., Kato, T., Kawahito, S. and Park, E. Y. 2016. An ultrasensitive $SiO_2$-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus. Biosens. Bioelectron. 86:135-142.   DOI
30 Algar, W. R., Tavares, A. J. and Krull, U. J. 2010. A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 673:1-25.   DOI
31 Sun, W., Zhong, J., Qin, P. and Jiao, K. 2008. Electrochemical biosensor for the detection of cauliflower mosaic virus 35S gene sequences using lead sulfide nanoparticles as oligonucleotide labels. Anal. Biochem. 377:115-119.   DOI
32 Tereshchenko, A., Fedorenko, V., Smyntyna, V., Konup, I., Konup, A., Eriksson, M., Yakimova, R., Ramanavicius, A., Balme, S. and Bechelany, M. 2017. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens. Bioelectron. 92:763-769.   DOI
33 Turner, A. P. F. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:3184-3196.   DOI
34 van Dorst, B., Mehta, J., Bekaert, K., Rouah-Martin, E., de Coen, W., Dubruel, P., Blust, R. and Robbens, J. 2010. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens. Bioelectron. 26:1178-1194.   DOI
35 Vinayaka, A. C. and Thakur, M. S. 2010. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal. Bioanal. Chem. 397:1445-1455.   DOI
36 Batchelor-McAuley, C., Wildgoose, G. G. and Compton, R. G. 2009. The physicochemical aspects of DNA sensing using electrochemical methods. Biosens. Bioelectron. 24:3183-3190.   DOI
37 Vinayaka, A. C. and Thakur, M. S. 2011. Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions. Bioconjug. Chem. 22:968-975.   DOI
38 Wegner, K. D. and Hildebrandt, N. 2015. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44:4792-4834.   DOI
39 Yuqing, M., Jianguo, G. and Jianrong, C. 2003. Ion sensitive field effect transducer-based biosensors. Biotechnol. Adv. 21:527-534.   DOI
40 Baller, M. K., Lang, H. P., Fritz, J., Gerber, C., Gimzewski, J. K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F. M., Fornaro, P., Meyer, E. and Guntherodt, H. J. 2000. A cantilever array-based artificial nose. Ultramicroscopy 82:1-9.   DOI
41 Berg, R. H. and Beachy, R. N. 2008. Fluorescent protein applications in plants. Methods Cell Biol. 85:153-177.
42 Candresse, T., Lot, H., German-Retana, S., Krause-Sakate, R., Thomas, J., Souche, S., Delaunay, T., Lanneau, M. and le Gall, O. 2007. Analysis of the serological variability of lettuce mosaic virus using monoclonal antibodies and surface plasmon resonance technology. J. Gen. Virol. 88:2605-2610.   DOI
43 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802-805.   DOI
44 Chan, W. C. W., Maxwell, D. J., Gao, X., Bailey, R. E., Han, M. and Nie, S. 2002. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13:40-46.   DOI
45 Chudakov, D. M., Matz, M. V., Lukyanov, S. and Lukyanov, K. A. 2010. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90:1103-1163.   DOI
46 Dhama, K., Karthik, K., Chakraborty, S., Tiwari, R., Kapoor, S., Kumar, A. and Thomas, P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogens: a review. Pak. J. Biol. Sci. 17:151-166.   DOI
47 Zhang, M., Chen, W., Chen, X., Zhang, Y., Lin, X., Wu, Z. and Li, M. 2013b. Multiplex immunoassays of plant viruses based on functionalized upconversion nanoparticles coupled with immunomagnetic separation. J. Nanomater. 2013:317437.
48 Zeng, C., Huang, X., Xu, J., Li, G., Ma, J., Ji, H. F., Zhu, S. and Chen, H. 2013. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal. Biochem. 440:18-22.   DOI
49 Zhang, C. and Johnson, L. W. 2006. Quantum-dot-based nanosensor for RRE IIB RNA-rev peptide interaction assay. J. Am. Chem. Soc. 128:5324-5325.   DOI
50 Zhang, H., Feng, G., Guo, Y. and Zhou, D. 2013a. Robust and specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor. Nanoscale 5:10307-10315.   DOI
51 Zimmer, M. 2002. Green Fluorescent Protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102:759-782.   DOI
52 Florschutz, K., Schroter, A., Schmieder, S., Chen, W., Schweizer, P., Sonntag, F., Danz, N., Baronian, K. and Kunze, G. 2013. 'Phytochip': on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J. Virol. Methods 189:80-86.   DOI
53 Dickert, F. L., Hayden, O., Bindeus, R., Mann, K. J., Blaas, D. and Waigmann, E. 2004. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal. Bioanal. Chem. 378:1929-1934.   DOI
54 Dubs, M. C., Altschuh, D. and van Regenmortel, M. H. V. 1992. Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol. Lett. 31:59-64.   DOI
55 Eun, A. J., Huang, L., Chew, F., Li, S. F. and Wong, S. 2002. Detection of two orchid viruses using quartz crystal microbalance-based DNA biosensors. Phytopathology 92:654-658.   DOI
56 Gerdes, H. and Kaether, C. 1996. Green fluorescent protein: applications in cell biology. FEBS Lett. 389:44-47.   DOI
57 Gutierrez-Aguirre, I., Hodnik, V., Glais, L., Rupar, M., Jacquot, E., Anderluh, G. and Ravnikar, M. 2014. Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies. Anal. Biochem. 447:74-81.   DOI
58 Ishikawa-Ankerhold, H. C., Ankerhold, R. and Drummen, G. P. C. 2012. Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:4047-4132.   DOI
59 Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M. and Seifalian, A. M. 2007. Biological applications of quantum dots. Biomaterials 28:4717-4732.   DOI