DOI QR코드

DOI QR Code

Nanoplasmonics: An Enabling Platform for Integrated Photonics and Biosensing

  • Lee, Jihye (School of Integrated Technology, Yonsei University) ;
  • Yeo, Jong-Souk (School of Integrated Technology, Yonsei University)
  • Received : 2015.01.25
  • Accepted : 2016.01.30
  • Published : 2016.01.30

Abstract

Nanoplasmonics is a developing field that offers attractive optical, electrical, and thermal properties for a wide range of potential applications. Based on the compelling characteristics of this field, researchers have shed light on the possibilities of integrated photonics and biosensing platforms using nanoplasmonic principles. Single and unique nanostructures with plasmons can act as individual transducers that convert desired information into measurable and readable signals. In this review, we will discuss nanoplasmonic sensors, especially those in relation to photodetectors for future optical interconnects, and bioinformation sensing platforms based on nanoplasmonics, thus providing a viable approach by which to create sensors corresponding to target applications. In addition, we also discuss scalable fabrication processes for the creation of unconventional nanoplasmonic devices, which will enable next-generation plasmonic devices for wearable, flexible, and biocompatible systems.

Keywords

References

  1. J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement vol. 1 (CRC press, Florida 2014), pp. I-7-I-9.
  2. J. Fraden, Handbook of modern sensors: physics, designs, and applications (Springer Science & Business Media, San Diego, 2004), pp. 37-119.
  3. X. Chen, Z. Guo, G.-M. Yang, J. Li, M.-Q. Li, J.-H. Liu, and X.-J. Huang, Mater. Today, 13, 28 (2010).
  4. J. Wang, Analyst, 130, 421 (2005). https://doi.org/10.1039/b414248a
  5. I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake, Biosens. Bioelectron, 20, 1652 (2005). https://doi.org/10.1016/j.bios.2004.07.020
  6. P. F. Davies, J. Vasc. Surg. 13, 729 (1991).
  7. C. J. Murphy, Anal. Chem. 74, 520A (2002).
  8. J. M. Lopez-Higuera, Handbook of optical fibre sensing technology (John Wiley & Sons, Chichester, 2002)
  9. A. Yalcin, K. C. Popat, J. C. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006). https://doi.org/10.1109/JSTQE.2005.863003
  10. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Chem. Rev. 112, 1105 (2011).
  11. S. C. Rashleigh, Opt. Lett. 5, 392 (1980). https://doi.org/10.1364/OL.5.000392
  12. H. Kaplan, Practical applications of infrared thermal sensing and imaging equipment vol. 75 (SPIE press,Washington, 2007) pp. 9-29.
  13. M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, Sensors, 10, 4342-4372 (2010). https://doi.org/10.3390/s100504342
  14. P. Han and X.-C. Zhang, Appl. Phys. Lett. 73, 3049 (1998). https://doi.org/10.1063/1.122668
  15. B. MacCraith, V. Ruddy, C. Potter, B. O'Kelly, and J. McGilp, Electron. Lett. 27, 1247 (1991). https://doi.org/10.1049/el:19910781
  16. R. Yotter and D. M. Wilson, IEEE Sens. J. 3, 288 (2003). https://doi.org/10.1109/JSEN.2003.814651
  17. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013). https://doi.org/10.1038/nnano.2013.208
  18. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, New York, 2007), pp. 65-80.
  19. H. A. Atwater, Sci. Am. 296, 56 (2007). https://doi.org/10.1038/scientificamerican0407-56
  20. H. Duan, A. I. Fernandez-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, Nano lett. 12, 1683 (2012). https://doi.org/10.1021/nl3001309
  21. M. I. Stockman, Phys. Today, 64, 39 (2011).
  22. G. Baffou and R. Quidant, Chem. Soc. Rev. 43, 3898 (2014). https://doi.org/10.1039/c3cs60364d
  23. A. Dmitriev, Nanoplasmonic sensors (Springer Science & Business Media, New York, 2012) pp. 105-126.
  24. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. -K. Zhou, X. Wang, C. Jin, and J. Wang, Nat. Commun. 4, 2381 (2013). https://doi.org/10.1038/ncomms3381
  25. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8, 867 (2009). https://doi.org/10.1038/nmat2546
  26. T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, Sensors, 11, 10907 (2011). https://doi.org/10.3390/s111110907
  27. H. Liao, C. L. Nehl, and J. H. Hafner, Nanomedicine, 1, 201 (2006). https://doi.org/10.2217/17435889.1.2.201
  28. A. J. Gormley, N. Larson, S. Sadekar, R. Robinson, A. Ray, and H. Ghandehari, Nano today, 7, 158 (2012). https://doi.org/10.1016/j.nantod.2012.04.002
  29. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, J. Phys. Chem. C, 113, 12090 (2009).
  30. A. Alu and N. Engheta, J. Opt. A-Pure. Appl. Op. 10, 093002 (2008). https://doi.org/10.1088/1464-4258/10/9/093002
  31. Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, Nanoscale, 6, 282 (2014). https://doi.org/10.1039/C3NR04375D
  32. A. Fatima, I. Mehra, and N. K. Nishchal, Proceedings of the 2014 International Conference on Fibre Optics and Photonics, (Kharagpur India, 13-16 December 2014) p. S5A. 52.
  33. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today, 9, 20 (2006).
  34. M. L. Brongersma, R. Zia, and J. Schuller, Appl. Phys. A, 89, 221 (2007). https://doi.org/10.1007/s00339-007-4151-1
  35. V. K. Valev, A. V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O. A. Aktsipetrov, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verviest, small, 7, 2573 (2011). https://doi.org/10.1002/smll.201100752
  36. S. A. Maier, Nature Photon. 2, 460 (2008). https://doi.org/10.1038/nphoton.2008.144
  37. J. Dionne, H. Lezec, and H. A. Atwater, Nano lett. 6, 1928 (2006). https://doi.org/10.1021/nl0610477
  38. P. Bai, M.-X. Gu, X.-C. Wei, and E.-P. Li, Opt. Express, 17, 24349, (2009). https://doi.org/10.1364/OE.17.024349
  39. Y. Yang, Q. Li, and M. Qiu, Scientific reports, 6, 19490 (2016). https://doi.org/10.1038/srep19490
  40. E. Ozbay, science, 311, 189 (2006). https://doi.org/10.1126/science.1114849
  41. A. Alu and N. Engheta, Nature Photon. 2, 307 (2008). https://doi.org/10.1038/nphoton.2008.53
  42. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Nano lett. 4, 957 (2004). https://doi.org/10.1021/nl049951r
  43. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett., 89, 093120 (2006). https://doi.org/10.1063/1.2339286
  44. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nature Photon. 3, 283 (2009). https://doi.org/10.1038/nphoton.2009.47
  45. A. Crut, P. Maioli, N. Del Fatti, and F. Vallee, Chem. Soc. Rev. 43, 3921 (2014). https://doi.org/10.1039/c3cs60367a
  46. J. H. Son, B. Cho, S. Hong, S. H. Lee, O. Hoxha, A. J. Haack, and L. P. Lee, Light. Sci. Appl. 4, e280 (2015). https://doi.org/10.1038/lsa.2015.53
  47. A. Glass, P. F. Liao, D. Olson, and L. Humphrey, Opt. Lett. 7, 575 (1982). https://doi.org/10.1364/OL.7.000575
  48. A. Sellai, Nucl. Instr. Meth. Phys. Res. A. 504, 170 (2003). https://doi.org/10.1016/S0168-9002(03)00815-5
  49. M. Rahman, A. Karakashian, S. Broude, and D. Gladden, Appl. Opt. 30, 2935 (1991). https://doi.org/10.1364/AO.30.002935
  50. J. Hetterich, G. Bastian, N. Gippius, S. Tikhodeev, G. Von Plessen, and U. Lemmer, IEEE J. Quant. Electron. 43, 855 (2007). https://doi.org/10.1109/JQE.2007.902934
  51. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, Jpn. J. Appl. Phys. 44, L364 (2005). https://doi.org/10.1143/JJAP.44.L364
  52. P. Berini, Laser Photon. Rev. 8, 197 (2014). https://doi.org/10.1002/lpor.201300019
  53. J.-H. Kim and J.-S. Yeo, Nano lett. 15, 2291 (2015). https://doi.org/10.1021/nl5043402
  54. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Small, 11, 2392 (2015). https://doi.org/10.1002/smll.201403422
  55. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  56. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano, 6, 74 (2011).
  57. A. Ashimoto, C. Chen, I. Bakker, and J. Slots, "Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions," Oral. Microbiol. Immun. 11, 266 (1996). https://doi.org/10.1111/j.1399-302X.1996.tb00180.x
  58. P. Grauballe, B. Vestergaard, A. Meyling, and J. Genner, J. Med. Virol. 7, 29 (1981). https://doi.org/10.1002/jmv.1890070104
  59. D. Muir, S. Varon, and M. Manthorpe, Anal. Biochem. 185, 377 (1990). https://doi.org/10.1016/0003-2697(90)90310-6
  60. F. Girosi, S. S. Olmsted, E. Keeler, D. C. H. Burgess, Y.-W. Lim, J. E. Aledort, M. E. Rafael, K. A. Ricci, R. Boer, L. Hilborne, K. P. Derose, M. V. Shea, C. M. Beighley, C. A. Dahl, and J. Wasserman, Nature, 444, 3 (2006). https://doi.org/10.1038/nature05441
  61. T. S. Hauck, S. Giri, Y. Gao, and W. C. Chan, Adv. Drug Deliv. Rev. 62, 438 (2010). https://doi.org/10.1016/j.addr.2009.11.015
  62. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanomedicine, 2, 681 (2007). https://doi.org/10.2217/17435889.2.5.681
  63. S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano lett. 7, 1338 (2007). https://doi.org/10.1021/nl070365i
  64. O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, Hatice altug, Nano letters, 2016. DOI: 10.1021/acs.nanolett.5 b05316
  65. K.-L. Lee, M.-L. You, C.-H. Tsai, E.-H. Lin, S.-Y. Hsieh, M.-H. Ho, J. -C. Hsu, and P. -K. Wei, Biosensors and Bioelectronics, 75, 88 (2016). https://doi.org/10.1016/j.bios.2015.08.010
  66. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008). https://doi.org/10.1038/nmat2162
  67. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008). https://doi.org/10.1039/b711486a
  68. M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzan, and L. M. Lechuga, ACS Nano, 4, 349 (2009).
  69. B. Sepulveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz- Marzan, Nano Today, 4, 244 (2009). https://doi.org/10.1016/j.nantod.2009.04.001
  70. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008). https://doi.org/10.1021/cr068126n
  71. I. Choi and Y. Choi, IEEE J. Sel. Top. Quantum Electron. 18, 1110 (2012). https://doi.org/10.1109/JSTQE.2011.2163386
  72. J. R. L. Guerreiro, M. Frederiksen, V. E. Bochenkov, V. De Freitas, M. G. Ferreira Sales, and D. S. Sutherland, ACS Nano, 8, 7958 (2014). https://doi.org/10.1021/nn501962y
  73. S. Lee, K. M. Mayer, and J. H. Hafner, Anal. chem. 81, 4450 (2009). https://doi.org/10.1021/ac900276n
  74. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, ACS Nano, 2, 687 (2008). https://doi.org/10.1021/nn7003734
  75. S. Chen, M. Svedendahl, R. P. V. Duyne, and M. Kall, Nano lett. 11, 1826 (2011). https://doi.org/10.1021/nl2006092
  76. P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010). https://doi.org/10.1016/j.cplett.2010.01.062
  77. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, Nano lett. 12, 1648 (2012). https://doi.org/10.1021/nl300012m
  78. X. Qian, X. Zhou, and S. Nie, J. Am. Chem. Soc. 130, 14934 (2008). https://doi.org/10.1021/ja8062502
  79. C. Tabor, D. Van Haute, and M. A. El-Sayed, ACS Nano, 3, 3670 (2009). https://doi.org/10.1021/nn900779f
  80. J. H. Yoon and S. Yoon, Langmuir, 29, 14772 (2013). https://doi.org/10.1021/la403599p
  81. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Plasmonics, 2, 107 (2007). https://doi.org/10.1007/s11468-007-9031-1
  82. J. Park and J.-S. Yeo, Chem. Commun. 50, 1366, (2014). https://doi.org/10.1039/C3CC48154A
  83. A. A. Tseng, Small, 1, 924 (2005). https://doi.org/10.1002/smll.200500113
  84. S. Matsui, T. Kaito, J.-i. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, J. Vac. Sci. Technol. B, 18, 3181 (2000). https://doi.org/10.1116/1.1319689
  85. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Mannin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000). https://doi.org/10.1016/S0169-4332(00)00352-4
  86. H. Seyringer, B. Funfstuck, and F. Schaffler, The Society of Microelectronics-Annual Report 1999
  87. B. Wu and A. Kumar, J. Vac. Sci. Technol. B, 25, 1743 (2007). https://doi.org/10.1116/1.2794048
  88. Q. Li, J. Zheng, and Z. Liu, Langmuir, 19, 166 (2003). https://doi.org/10.1021/la0259149
  89. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Adv. Mater. 23, 4422 (2011). https://doi.org/10.1002/adma.201102430
  90. S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, ACS Nano, 5, 897 (2011). https://doi.org/10.1021/nn102041m
  91. J. A. Rogers and R. G. Nuzzo, Mater. Today, 8, 50 (2005).
  92. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001). https://doi.org/10.1021/jp010657m
  93. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zach, and B. Kasemo, Adv. Mater. 19, 4297 (2007). https://doi.org/10.1002/adma.200700680
  94. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, Nano lett. 8, 20 (2008). https://doi.org/10.1021/nl071626r
  95. D. Y. Khang, H. Yoon, and H. H. Lee, Adv. Mater. 13, 749 (2001). https://doi.org/10.1002/1521-4095(200105)13:10<749::AID-ADMA749>3.0.CO;2-7
  96. S. J. Barcelo, A. Kim, W. Wu, and Z. Li, ACS Nano, 6, 6446 (2012). https://doi.org/10.1021/nn3020807
  97. J. Lee, J. Park, J. Y. Lee, and J. S. Yeo, Adv. Sci. 2, 1500121, (2015). https://doi.org/10.1002/advs.201500121
  98. G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013). https://doi.org/10.1002/adma.201205076
  99. N. Kinsey, M. Ferrera, V. Shalaev, and A. Boltasseva, J. Opt. Soc. Am. 32, 121 (2015). https://doi.org/10.1364/JOSAB.32.000121
  100. Y. Zhong, S. D. Malagari, T. Hamilton, and D. Wasserman, J. Nanophotonics, 9, 093791 (2015). https://doi.org/10.1117/1.JNP.9.093791
  101. J. C. Ndukaife, A. Mishra, U. Guler, A. G. A. Nnanna, S. T. Wereley, and A. Boltasseva, ACS Nano, 8, 9035 (2014). https://doi.org/10.1021/nn502294w
  102. P. Chen, M. T. Chung, W. McHugh, R. Nidetz, Y. Li, J. Fu, T. T. Cornell, T. P. Shanley, and K. Kurabayashi, ACS Nano, 9, 4173 (2015). https://doi.org/10.1021/acsnano.5b00396
  103. X. Wang, Y. Cui, and J. Irudayaraj, ACS Nano, 9, 11924 (2015). https://doi.org/10.1021/acsnano.5b04451