• Title/Summary/Keyword: Biomass and waste

Search Result 328, Processing Time 0.028 seconds

A Mathematical Model for the Behavior of Nitrogen and Phosphorus During the Aerobic Digestion (호기성 소화과정 중 질소 및 인의 거동에 대한 수학적 모형)

  • Choung, Youn Kyoo;Ko, Kwang Baik;Park, Joon Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.635-644
    • /
    • 1994
  • A mathematical model was developed to predict the concentrations of various nutrients in supernatants during aerobic digestion which is suitable to be employed in small wastewater treatment plants with such advantages as low capital cost and stable process. Significant reactions were determined with observing the behavior of nitrgen and phosphorus, and the model equations were built up in the form of simultaneous differential equations considering Mass Balance. Laboratory batch experiments were carried out at $20^{\circ}C$ and pH $7.5{\pm}0.5$ on the aerobic digestion of waste activated sludge at different solid levels. Nonlinear regression analysis was performed to estimate various reaction rate constants. The developed model can predict the behavior of Biomass N, dissolved organic N, $NH_4{^-}$-N, $NO_x{^-}$-N, and Biomass P, dissolved organic P, $PO_4{^-}$-P in aerobic digestion process. In this study, the results of simulation showed that dissolved nutrients had more effects on supernatants than nutrients in biomass, and phosphorus was more effective on supernatants than nitrogen.

  • PDF

Color Removal from Dyeing Effluent using Activated Carbons Produced from Various Indigenous Biomass

  • Islam, Md. Shahidul;Das, Ajoy Kumar;Kim, In-Kyo;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Colored compounds adsorption from the textile dyeing effluents on activated carbons produced from various indigenous vegetable sources by zinc chloride activation is studied. The most important parameters in chemical activation were found to be the chemical ratio of $ZnCl_2$ to feed (3:1), carbonization temperature (460-470 $^{\circ}C$) and time of activation (75 min). The absorbance at 511 nm (red effluent) and 615 nm (blue effluent) are used for estimation of color. It is established that at optimum temperature ($50^{\circ}C$), time of contact (30-40 min) and adsorbent loading (2 g/L), activated carbons developed from rain tree (Samanea saman) saw dust and blackberry (Randia formosa) tree saw dust showed great capability to remove color materials from the effluents. It is observed that adsorption of reactive dyes by all types of activated carbons is more than that of disperse dyes. It is explained that because of its acidic nature the activated carbon can adsorb better reactive dye particles containing large number of nitrogen sites and $-SO_3Na$ group in their structure. The use of activated carbons from the indigenous biomass would be economical, because saw dusts are readily available waste worldwide.

Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application

  • Harshini Priyaa, V.S.;Saravanathamizhan, R.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.159-169
    • /
    • 2019
  • The activated carbon materials were prepared from waste biomass by ultrasonic assisted chemical activation method (UCA), ultrasonic assisted physical activation method (UPA) and Manganese nitrogen doped carbon (Mn/N-C). The XRD result shows the turbostatic (fully disordered) structure. The cyclic voltammetry test was done at 50 mV/s using 1M sodium sulfate and the values of specific capacitance were found to be 93, 100 and 115 F/g for UCA, UPA and Mn/N-C respectively. The power density values for the samples UCA, UPA and Mn/N-C were found to be 46.04, 87.97 and 131.42 W/kg respectively. The electrochemical impedance spectroscopy was done at low frequency between 1 to 10 kHz. The Nyquist plot gives the resistant characteristics of the materials due to diffusional resistance at the electrode-electrolyte interface. The Energy Dispersive X-Ray Spectroscopyanalysis (EDAX) analysis showed that the percentage doping of nitrogen and manganese were 3.53 wt% and 9.44 wt% respectively. It is observed from the experiment Mn/N-C doped carbon show good physical and electrochemical properties.

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

A Concise Review of Recent Application Progress and Future Prospects for Lignin as Biomass Utilization

  • Hong, Seo-Hwa;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.136-151
    • /
    • 2021
  • Biomass lignin, a waste produced during the paper and bio-ethanol production process, is a cheap material that is available in large quantities. Thus, the interest in the valorization of biomass lignin has been increasing in industrial and academic areas. Over the years, lignin has been predominantly burnt as fuel to run pulping plants. However, less than 2% of the available lignin has been utilized for producing specialty chemicals, such as dispersants, adhesives, surfactants, and other value-added products. The development of value-added lignin-derived co-products should help make second generation biorefineries and the paper industry more profitable by valorizing lignin. Another possible approach towards value-added applications is using lignin as a component in plastics. However, blending lignin with polymers is not simple because the polarity of lignin molecules results in strong self-interactions. Therefore, achieving in-depth insights on lignin characteristics and structure will help in accelerating the development of lignin-based products. Considering the multipurpose characteristics of lignin for producing value-added products, this review will shed light on the potential applications of lignin and lignin-based derivatives on polymeric composite production. Moreover, the challenges in lignin valorization will be addressed.

Distribution Maps for Waste generation using GIS (GIS 이용 폐기물 발생량 분포지도 작성)

  • Kim, Yi-Hyun;Hong, S. Young;Hong, Seung-Gil;Choe, Eunyoung;Nam, Jae Jak;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • This study was carried out to analyze national and regional distribution of the organic wastes generation and build their distribution maps including food wastes, paper and wood wastes, wastewater and slaughterhouse wastes. The information for the annual waste production was modified using statistics from Ministry of Environment (MOE). Based on waste generation resources data, we established database architecture table about waste generation. The distribution maps for food wastes were built up in both national and regional scales and distribution maps for paper and wood wastes, wastewater and slaughterhouse wastes were also produced, respectively. The distribution maps of waste generation graphically provide the information regarding biomass resources to policy-makers, farmers, general users and it is highly expected to be utilized for policy-making of environmental-friendly agriculture and bioenergy.

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

Evaluation of Biodiesel Production Systems and Factors Affecting Product Yield (바이오디젤의 생산 공정 비교 및 생성물 수율에 미치는 인자들)

  • Lee, Jong-Man;Lee, Jae-Heung;Cho, Nam-Jun
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.183-192
    • /
    • 2011
  • In recent years there has been an increasing focus on global warming and the exhaustion of resources caused by the heavy consumption of fossil fuels. In order to resolve these issues, biomass has gained much attention as a source of renewable energy. One area of particular interest has been the production of biodiesel. The biodiesel produced by the transesterification of vegetable oils, animal fats and waste cooking oils is expected to be one of the eco-friendly biomass-based alternatives to fossil fuels. This paper reviews some of the recent findings for the effective biodiesel production system, together with several factors affecting the biodiesel yield.

  • PDF

Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source

  • Mozejko, Justyna;Wilke, Andreas;Przybylek, Grzegorz;Ciesielski, Slawomir
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2012
  • The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fed-batch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the Pseudomonas Gl01 strain is capable of growing and accumulating mcl-PHAs using a waste oily carbon source. The biomass value reached 3.0 g/l of CDW with 20% of PHAs content within 48 h of cultivation. The polymer was purified from lyophilized cells and analyzed by gas chromatography (GC). The results revealed that the monomeric composition of the obtained polyesters depended on the available substrate. When glucose was used in the growth phase, 3-hydroxyundecanoate and 3-hydroxydodecanoate were found in the polymer composition, whereas in the PHAs-accumulating stage, the Pseudomonas Gl01 strain synthesized mcl-PHAs consisting mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate. The transcriptional analysis using reverse-transcription real-time PCR reaction revealed that the phaC1 gene could be transcribed simultaneously to the phaZ gene.