DOI QR코드

DOI QR Code

A Concise Review of Recent Application Progress and Future Prospects for Lignin as Biomass Utilization

  • Hong, Seo-Hwa (Materials Chemistry & Engineering Laboratory, School of Polymer Science & Engineering, Dankook University) ;
  • Hwang, Seok-Ho (Materials Chemistry & Engineering Laboratory, School of Polymer Science & Engineering, Dankook University)
  • Received : 2021.08.17
  • Accepted : 2021.08.24
  • Published : 2021.09.30

Abstract

Biomass lignin, a waste produced during the paper and bio-ethanol production process, is a cheap material that is available in large quantities. Thus, the interest in the valorization of biomass lignin has been increasing in industrial and academic areas. Over the years, lignin has been predominantly burnt as fuel to run pulping plants. However, less than 2% of the available lignin has been utilized for producing specialty chemicals, such as dispersants, adhesives, surfactants, and other value-added products. The development of value-added lignin-derived co-products should help make second generation biorefineries and the paper industry more profitable by valorizing lignin. Another possible approach towards value-added applications is using lignin as a component in plastics. However, blending lignin with polymers is not simple because the polarity of lignin molecules results in strong self-interactions. Therefore, achieving in-depth insights on lignin characteristics and structure will help in accelerating the development of lignin-based products. Considering the multipurpose characteristics of lignin for producing value-added products, this review will shed light on the potential applications of lignin and lignin-based derivatives on polymeric composite production. Moreover, the challenges in lignin valorization will be addressed.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1F1A104965211)과 경기도 지역협력 연구사업(GRRC 단국 2016-B01)에 의해 지원되었으며 이에 감사드립니다.

References

  1. F. Sarasini, J. Tirillo, D. Puglia, F. Dominici, C. Santulli, K. Boimau, T. Valente, and L. Torre, "Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres", Compos. Struct., 167, 20 (2017). https://doi.org/10.1016/j.compstruct.2017.01.071
  2. M. A. Huneault and H. Li, "Morphology and properties of compatibilized polylactide/thermoplastic starch blends", Polymer, 48, 270 (2007). https://doi.org/10.1016/j.polymer.2006.11.023
  3. M. Brodin, M. Vallejos, M. T. Opedal, M. C. Area, and G. Chinga-Carrasco, "Lignocellulosics as sustainable resources for production of bioplastics - A review", J. Clean. Prod., 162, 646 (2017). https://doi.org/10.1016/j.jclepro.2017.05.209
  4. C. K. Yong, Y. C. Ching, C. H. Chuah, and N.-S. Liou, "Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite", Bioresources, 10, 2597 (2015).
  5. X. Zhou, F. Zheng, C. Lv, L. Tang, K. Wei, X. Liu, G. Du, Q. Yong, and G. Xue, "Properties of formaldehyde-free environmentally friendly lignocellulosic compositesmade from poplar fibres and oxygen-plasma-treated enzymatic hydrolysis lignin", Compos. Part B Eng., 53, 369 (2013). https://doi.org/10.1016/j.compositesb.2013.05.037
  6. V. Hemmila, J. Trischler, and D. Sandberg, "Lignin : an adhesive raw material of the future or waste of research energy?", In Proceedings of 9th Meeting of the Northern European Network for Wood Science and Engineering (WSE)", Eds. by C. Brischke, and L. Meyer, 98 (2013).
  7. M. F. Rosa, B. Chiou, E. S. Medeiros, D. F. Wood, T. G. Williams, L. H. C. Mattoso, W. J. Orts, and S. H. Imam, "Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites", Bioresour. Technol., 100, 5196 (2009). https://doi.org/10.1016/j.biortech.2009.03.085
  8. N. Graupner, "Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites", J. Mater. Sci., 43, 5222 (2008). https://doi.org/10.1007/s10853-008-2762-3
  9. I. Spiridon, K. Leluk, A. M. Resmerita, and R. N. Darie, "Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering", Compos. Part B Eng., 69, 342 (2015). https://doi.org/10.1016/j.compositesb.2014.10.006
  10. S. S. Nair, H. Chen, Y. Peng, Y. Huang, and N. Yan, "Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties", ACS Sustainable Chem. Eng., 6, 10058 (2018). https://doi.org/10.1021/acssuschemeng.8b01405
  11. A. Duval and M. Lawoko, "A review on lignin-based polymeric, micro- and nano-structured materials", React. Funct. Polym., 85, 78 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
  12. C. Pouteau, P. Dole, B. Cathala, L. Averous, and N. Boquillon, "Antioxidant properties of lignin in polypropylene", Polym. Degrad. Stab., 81, 9 (2003). https://doi.org/10.1016/S0141-3910(03)00057-0
  13. K. Sahakaro, N. Naskar, R. N. Datta, and J. W. M. Noordermeer, "Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. I. Preparation, cure characteristics and mechanical properties", J. Appl. Polym. Sci., 103, 2538 (2006). https://doi.org/10.1002/app.25088
  14. N. G. Lewis and E. Yamamoto, "Lignin: occurrence, biogenesis and biodegradation", Annu. Rev. Plant Physiol. Plant Mol. Biol., 41, 455 (1990). https://doi.org/10.1146/annurev.pp.41.060190.002323
  15. G. Henriksson, "Lignin", In "Wood chemistry and wood biotechnology", Eds. by M. Ek, G. Gellerstedt, and G. Henriksson, Walter de Gruyter, 121 (2009).
  16. A. Holmgren, G. Brunow, G. Henriksson, L. Zhang, and J. Ralph, "Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins", Org. Biomol. Chem., 4, 3456 (2006). https://doi.org/10.1039/b606369a
  17. W. G. Glasser, "Classification of lignin according to chemical and molecular structure", In "Lignin historical, biological, and materials perspectives", Eds. by W. G. Glasser, R. A. Northey, and T. P. Schultz, ACS Symposium Series, Vol. 742, American Chemical Society, 216 (1999).
  18. R. W. Whetten, J. J. Mackay, and R. R. Sederoff, "Recent advances in understanding lignin biosynthesis", Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 585 (1998). https://doi.org/10.1146/annurev.arplant.49.1.585
  19. A. Scalbert, "Ether linkage between phenolic acids and lignin fractions from wheat straw", Phytochem., 24, 1359 (1985). https://doi.org/10.1016/S0031-9422(00)81133-4
  20. A. Vishtal and A. Kraslawski, "Challenges in industrial applications of technical lignins", Bioresources, 6, 3547 (2011). https://doi.org/10.15376/biores.6.3.3547-3568
  21. W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, "Value-adding to cellulosic ethanol: Lignin polymers", Ind. Crop. Prod., 33, 259 (2011). https://doi.org/10.1016/j.indcrop.2010.10.022
  22. J. C. Carvajal, A. Gomez, and C. A. Cardona, "Comparison of lignin extraction processes: Economic and environmental assessment", Bioresour. Technol., 214, 468 (2016). https://doi.org/10.1016/j.biortech.2016.04.103
  23. N. Mandlekar, A. Cayla, F. Rault, S. Giraud, F. Salaun, G. Malucelli, and J.-P. Guan, "An overview on the use of lignin and its derivatives in fire retardant polymer systems", In "Lignin - trends and applications", Eds. by M. Poletto, InTech, 2777 (2018).
  24. J. H. Lora and W. G. Glasser, "Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials", J. Polym. Environ., 10, 39 (2002). https://doi.org/10.1023/A:1021070006895
  25. A. Tejado, C. Pena, J. Labidi, J. M. Echeverria, and I. Mondragon, "Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis", Bioresour. Technol., 98, 1655 (2007). https://doi.org/10.1016/j.biortech.2006.05.042
  26. H. L'udmila, J. Michal, S. Andrea, and H. Ales, "Lignin, potential products and their market value", Wood Res., 6, 973 (2015).
  27. A. Tribot, G. Amer, M. Abdou Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, C. Vial, P. Michaud, and C.-G. Dussap, "Wood-lignin: Supply, extraction processes and use as bio-based material", Eur. Polym. J., 112, 228 (2019). https://doi.org/10.1016/j.eurpolymj.2019.01.007
  28. Z. Strassberger, S. Tanase, and G. Rothenberg, "The pros and cons of lignin valorisation in an integrated biorefinery", RSC Adv., 4, 25310 (2014). https://doi.org/10.1039/C4RA04747H
  29. S. Laurichesse and L. Averous, "Chemical modification of lignins: Towards biobased polymers", Prog. Polym, Sci., 39, 1266 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004
  30. H. Sixta, "Handbook of pulp", Wiley-VCH (2006).
  31. M. K. R. Konduri and P. Fatehi, "Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite", ACS Sustainable Chem. Eng., 3, 1172 (2015). https://doi.org/10.1021/acssuschemeng.5b00098
  32. A. E. Kazzaz, Z. Hosseinpour Feizi, and P. Fatehi, "Interaction of sulfomethylated lignin and aluminum oxide", Colloid Polym. Sci., 296, 1867 (2018). https://doi.org/10.1007/s00396-018-4408-6
  33. Y. Qin, D. Yang, W. Guo, and X. Qiu, "Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry", J. Ind. Eng. Chem., 27, 192 (2015). https://doi.org/10.1016/j.jiec.2014.12.034
  34. A. J. Ragauskas and C. G. Yoo, "Editorial: advancements in biomass recalcitrance: The use of lignin for the production of fuels and chemicals", Front. Energy Res., 6, 118 (2018). https://doi.org/10.3389/fenrg.2018.00118
  35. J. F. Kadla and S. Kubo, "Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin", Macromolecules, 36, 7803 (2003). https://doi.org/10.1021/ma0348371
  36. Y. Cao, S. S. Chen, S. Zhang, Y. S. Ok, B. M. Matsagar, K. C.-W. Wu, and D. C. W. Tsang, "Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery", Bioresour. Technol., 291, 121878 (2019). https://doi.org/10.1016/j.biortech.2019.121878
  37. G. E. Fredheim, S. M. Braaten, and B. E. Christensen, "Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering", J. Chromatogr. A, 942, 191 (2002). https://doi.org/10.1016/S0021-9673(01)01377-2
  38. J. K. Sameni, "Physico-chemical characterization of lignin isolated from industrial sources for advanced applications", Ph.D. Dissertation, University of Toronto, Canada. (2015).
  39. J. Lange, "Renewable feedstocks: The problem of catalyst deactivation and its mitigation", Angew. Chem. Int. Ed., 54, 13186 (2015). https://doi.org/10.1002/anie.201503595
  40. H. Ye, Y. Zhang, and Z. Yu, "Effect of desulfonation of lignosulfonate on the properties of poly (lactic acid)/lignin composites", Bioresource, 3, 4810 (2017).
  41. T. Aro and P. Fatehi, "Production and application of lignosulfonates and sulfonated lignin", ChemSusChem., 10, 1861 (2017). https://doi.org/10.1002/cssc.201700082
  42. P. Fatehi and J. Chen, "Extraction of technical lignins from pulping spent liquors, challenges and opportunities", In "Production of biofuels and chemicals from lignin", Eds. by Z. Fang, and R. L. Smith, Springer, 35 (2016).
  43. D. Kun and B. Pukanszky, "Polymer/lignin blends: interactions, properties, applications," Eur. Polym. J., 93, 618 (2017). https://doi.org/10.1016/j.eurpolymj.2017.04.035
  44. A. Berlin and M. Balakshin, "Industrial lignins: analysis, properties, and applications", In "Bioenergy research: advances and applications", Eds by V. K. Gupta, C. P. Kubicek, J. Saddler, F. Xu, and M. G. Tuohy, Elsevier Book Series, Elsevier, 315 (2014).
  45. A. Shrotri, H. Kobayashi, and A. Fukuoka, "Catalytic conversion of structural carbohydrates and lignin to chemicals", In "Advances in catalysis", Eds. by M. Dieguez, Elsevier Book Series, Elsevier, 59 (2017).
  46. J. H. Lora and W. G. Glasser, "Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials", J. Polym. Environ., 10, 39 (2002). https://doi.org/10.1023/A:1021070006895
  47. N. Smolarski, "High-value opportunities for lignin: unlocking its potential", Frost & Sullivan, November 07, (2012).
  48. P. Alvira, E. Tomas-Pejo, M. Ballesteros, and M. J. Negro, "Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review", Bioresour. Technol., 101, 4851 (2010). https://doi.org/10.1016/j.biortech.2009.11.093
  49. Y. Sun and J. Cheng, "Hydrolysis of lignocellulosic materials for ethanol production: a review", Bioresour. Technol., 83, 1 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  50. M. N. Belgacem, A. Blayo, and A. Gandini, "Organosolv lignin as a filler in inks, varnishes and paints", Ind. Crop. Prod., 18, 145 (2003). https://doi.org/10.1016/S0926-6690(03)00042-6
  51. E. Ahmad and K. K. Pant, "Lignin conversion: A key to the concept of lignocellulosic biomass-based integrated biorefinery", In "Waste biorefinery", Eds. by T. Bhaska, A. Pandey, S. V. Mohan, D.-J. Lee, and S. K. Khanal, Elsevier, 409 (2018).
  52. D. A. Baker and T. G. Rials, "Recent advances in low-cost carbon fiber manufacture from lignin", J. Appl. Polym. Sci., 130, 713 (2013). https://doi.org/10.1002/app.39273
  53. H. Sadeghifar and D. S. Argyropoulos, "Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene", ACS Sustainable Chem. Eng., 3, 349 (2015). https://doi.org/10.1021/sc500756n
  54. M. R. Snowdon, A. K. Mohanty, and M. Misra, "A study of carbonized lignin as an alternative to carbon black", ACS Sustainable Chem. Eng., 2, 1257 (2014). https://doi.org/10.1021/sc500086v
  55. P. Myllytie, M. Misra, and A. K. Mohanty, "Carbonized lignin as sustainable filler in biobased poly(trimethylene terephthalate) polymer for injection molding applications", ACS Sustainable Chem. Eng., 4, 102 (2016). https://doi.org/10.1021/acssuschemeng.5b00796
  56. S. Gillet, M. Aguedo, L. Petitjean, A. R. C. Morais, A. M. da Costa Lopes, R. M. Lukasik, and P. T. Anastas, "Lignin transformations for high value applications: towards targeted modifications using green chemistry", Green Chem., 19, 4200 (2017). https://doi.org/10.1039/C7GC01479A
  57. S. Hu, S. Zhang, N. Pan, and Y.-L. Hsieh, "High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes", J. Power Sources, 270, 106 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.063
  58. A. Cayla, F. Rault, S. Giraud, F. Salaun, V. Fierro, and A. Celzard, "PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile", Polymers, 9, 331 (2016). https://doi.org/10.3390/polym9080331
  59. S. R. Yearla and K. Padmasree, "Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants", J. Exp. Nanosci., 11, 289 (2015). https://doi.org/10.1080/17458080.2015.1055842
  60. C. D. Scown, A. A. Gokhale, P. A. Willems, A. Horvath, and T. E. McKone, "Role of lignin in reducing life-cycle carbon emissions, water use, and cost for united states cellulosic biofuels", Environ. Sci. Technol., 48, 8446 (2014). https://doi.org/10.1021/es5012753
  61. J. E. Holladay, J. F. White, J. J. Bozell, and D. Johnson, "Top value-added chemicals from biomass; Volume II: results of screening for potential candidates from biorefinery lignin", Office of Scientific and Technical Information (OSTI), (2007).
  62. J. Jung, L. Zhang, and J. Zhang, "Lead-acid battery technologies: fundamentals, materials, and applications", CRC Press (2015).
  63. S. V. Gnedenkov, D. P. Opra, L. A. Zemnukhova, S. L. Sinebryukhov, I. A. Kedrinskii, O. V. Patrusheva, A. Grossman, and V. Wilfred, "Lignin-based polymers and nanomaterials", Curr. Opin. Biotechnol., 56, 112 (2018).
  64. W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang, and W. Huang, "Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance", Electrochim. Acta., 176, 1136 (2015). https://doi.org/10.1016/j.electacta.2015.08.001
  65. S. M. Fonseca, T. Moreira, A. J. Parola, C. Pinheiro, and C. A. Laia, "PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices", Sol. Energy Mater. Sol. Cells, 159, 94 (2017). https://doi.org/10.1016/j.solmat.2016.09.002
  66. T. Aso, K. Koda, S. Kubo, T. Yamada, I. Nakajima, and Y. Uraki, "Preparation of novel lignin-based cement dispersants from isolated lignins", J. Wood Chem. Technol., 33, 286 (2013). https://doi.org/10.1080/02773813.2013.794841
  67. W. Z. Ouyang, Y. Huang, H. J. Luo, and D. S. Wang, "Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends", Chin. Chem. Lett., 23, 351 (2012). https://doi.org/10.1016/j.cclet.2011.11.023
  68. A. Kamoun, A. Jelidi, and M. Chaabouni, "Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer-water reducer for cement", Cem. Concr. Res., 33, 995 (2003). https://doi.org/10.1016/S0008-8846(02)01098-0
  69. J. J. Meister, "Modification of lignin", J. Macromol. Sci., Polym. Rev., 42, 235 (2002). https://doi.org/10.1081/MC-120004764
  70. P. Dilling, and M. S. Dimitri, U.S. patent 4,891,070 (1990).
  71. F. G. Calvo-Flores and J. A. Dobado, "Lignin as renewable raw material", ChemSusChem., 3, 1227 (2010). https://doi.org/10.1002/cssc.201000157
  72. T. C. Nirmale, B. B. Kale, and A. J. Varma, "A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery", Int. J. Biol. Macromol., 103, 1032 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.155
  73. A. Rangan, M. V. Manjula, K. G. Satyanarayana, and R. Menon, "Lignin/nanolignin and their biodegradable composites," In "Biodegradable green composites", John Wiley & Sons, 167-198 (2016).
  74. P. Figueiredo, K. Lintinen, J. T. Hirvonen, M. A. Kostiainen, and H. A. Santos, "Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications", Prog. Mater. Sci., 93, 233 (2018). https://doi.org/10.1016/j.pmatsci.2017.12.001
  75. P. Mishra and R. Wimmer, "Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition", Ultrason. Sonochem., 35, 45 (2017). https://doi.org/10.1016/j.ultsonch.2016.09.001
  76. I. E. Raschip, E. G. Hitruc, and C. Vasile, "Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization", High Perform. Polym., 23, 219 (2011). https://doi.org/10.1177/0954008311399112
  77. E. Ten and W. Vermerris, "Recent developments in polymers derived from industrial lignin", J. Appl. Polym. Sci., 132, 42069 (2014).
  78. F. Zamboni, S. Vieira, R. L. Reis, J. M. Oliveira, and M. N. Collins, "The potential of hyaluronic acid in immunoprotection and immunomodulation: chemistry, processing and function", Prog. Mater. Sci., 97, 97 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.003
  79. V. K. Thakur and M. K. Thakur, "Recent advances in green hydrogels from lignin: a review", Int. J. Biol. Macromol., 72, 834 (2015). https://doi.org/10.1016/j.ijbiomac.2014.09.044
  80. W. K. El-Zawawy, "Preparation of hydrogel from green polymer", Polym. Adv. Technol., 16, 48 (2005). https://doi.org/10.1002/pat.537
  81. L. Passauer, K. Fischer, and F. Liebner, "Preparation and physical characterization of strongly swellable oligo (oxyethylene) lignin hydrogels", Holzforschung, 65, 309 (2011). https://doi.org/10.1515/hf.2011.044
  82. H. A. Hegazi, "Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents", HBRC J., 9, 276 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.004
  83. Y. Ge and Z. Li, "Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review", ACS Sustainable Chem. Eng., 6, 7181 (2018). https://doi.org/10.1021/acssuschemeng.8b01345
  84. X. Guo, S. Zhang, and X. Shan, "Adsorption of metal ions on lignin", J. Hazard. Mater., 151, 134 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.065
  85. M. A. Chowdhury, "The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices", Int. J. Biol. Macromol., 65, 136 (2014). https://doi.org/10.1016/j.ijbiomac.2014.01.012
  86. C. Yu, F. Wang, C. Zhang, S. Fu, and L. A. Lucia, "The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent", React. Funct. Polym., 106, 137 (2016). https://doi.org/10.1016/j.reactfunctpolym.2016.07.016
  87. S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, and J. L. Scott, "Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid", Green Chem., 11, 339 (2009). https://doi.org/10.1039/b815310h
  88. F. Flores-Cespedes, G. P. Martinez-Dominguez, M. Villafranca-Sanchez, and M. Fernandez-Perez, "Preparation and characterization of azadirachtin alginate-biosorbent based formulations: water release kinetics and photodegradation study", J. Agric. Food Chem., 63, 8391 (2015). https://doi.org/10.1021/acs.jafc.5b03255
  89. H.-W. Kammer, "Surface and Interfacial Tension of polymer melts-thermodynamic theory of the interface between immiscible polymers", Zeitschrift fur Physikalische Chemie, 2580, 1149 (1977). https://doi.org/10.1515/zpch-1977-258153
  90. G. I. Taylor, "The formation of emulsions in definable fields of flow", Proc. R. Soc. Lond., Ser. A, 146, 501 (1934). https://doi.org/10.1098/rspa.1934.0169
  91. I. Fortelny, P. Kamenicka, and J. Kovar, "Effect of the viscosity of components on the phase structure and impact strength of polypropylene/ethylene-propylene elastomer blends", Angew. Makromol. Chem., 164, 125 (1988). https://doi.org/10.1002/apmc.1988.051640110
  92. J. Moczo, E. Fekete, and B. Pukanszky, "Acid-base interactions and interphase formation in particulate-filled polymers", J. Adhes., 78, 861 (2002). https://doi.org/10.1080/00218460214099
  93. G. Szabo, V. Romhanyi, D. Kun, K. Renner, and B. Pukanszky, "Competitive interactions in aromatic polymer/ lignosulfonate blends", ACS Sustainable Chem. Eng., 5, 410 (2017). https://doi.org/10.1021/acssuschemeng.6b01785
  94. K. Choo, Y. Ching, C. Chuah, S. Julai, and N.-S. Liou, "Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber", Materials, 9, 644 (2016). https://doi.org/10.3390/ma9080644
  95. S. Suzuki, A. Ishikuro, D. Hirose, K. Ninomiya, and K. Takahashi, "Dual catalytic activity of an ionic liquid in lignin acetylation and deacetylation", Chem. Lett., 47, 860 (2018). https://doi.org/10.1246/cl.180350
  96. H. Wang, W. Chen, X. Zhang, Y. Wei, A. Zhang, S. Liu, X. Wang, and C. Liu, "Structural changes of bagasse during the homogeneous esterification with maleic anhydride in ionic liquid 1-allyl-3-methylimidazolium chloride", Polymers 10, 433 (2018). https://doi.org/10.3390/polym10040433
  97. H. Wang, X. Zhang, Y. Wei, A. Zhang, C. Liu, and R. Sun, "Homogeneous esterification mechanism of bagasse modified with phthalic anhydride in ionic liquid, part 3: structural transformation of lignins", Bioresources, 12, 4062 (2017).
  98. S. Laurichesse and L. Averous, "Synthesis, thermal properties, rheological and mechanical behaviors of ligninsgrafted-poly(ε-caprolactone)", Polymer, 54, 3882 (2013). https://doi.org/10.1016/j.polymer.2013.05.054
  99. H. Nagele, J. Pfitzer, E. Nagele, E. R. Inone, N. Eisenreich, W. Eckl, and P. Eyerer, "Arboform - a thermoplastic, processable material from lignin and natural fibers", In "Chemical modification, properties, and usage of lignin", Eds. by T. Q. Hu, Kluwer Academic/Plenum Publishers, pp 101 (2002).
  100. S. Sahoo, M. Misra, and A. K. Mohanty, "Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites", J. Appl. Polym. Sci., 127, 4110 (2013). https://doi.org/10.1002/app.37667
  101. Y. Li and S. Sarkanen, "Thermoplastics with very high lignin contents", In "Lignin: historical, biological, and materials perspectives", Eds. by W. G. Glasser, R. A. Northey, and T. P. Schultz, ACS Symposium Series Vol. 742, American Chemical Society, 351 (1999).
  102. A. Duval and M. Lawoko, "A review on lignin-based polymeric, micro- and nano-structured materials", React. Funct. Polym., 85, 78 (2014). https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
  103. A. Tejado, C. Pena, J. Labidi, J. M. Echeverria, and I. Mondragon, "Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis", Bioresour. Technol., 98, 1655 (2007). https://doi.org/10.1016/j.biortech.2006.05.042
  104. A. Lee and Y. Deng, "Green polyurethane from lignin and soybean oil through nonisocyanate reactions", Eur. Polym. J., 63, 67 (2015). https://doi.org/10.1016/j.eurpolymj.2014.11.023
  105. C. Sasaki, M. Wanaka, H. Takagi, S. Tamura, C. Asada, and Y. Nakamura, "Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin", Ind. Crop. Prod., 43, 757 (2013). https://doi.org/10.1016/j.indcrop.2012.08.018
  106. C. Asada, S. Basnet, M. Otsuka, C. Sasaki, and Y. Nakamura, "Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials", Int. J. Biol. Macromol., 74, 413 (2015). https://doi.org/10.1016/j.ijbiomac.2014.12.039
  107. I. T. Kim, T. K. Sinha, J. Lee, Y. Lee, and J. S. Oh, "Ultrasonic treatment: An Acid-free green approach toward preparing high performance activated carbon from lignin", Ind. Eng. Chem. Res., 60, 2439 (2021). https://doi.org/10.1021/acs.iecr.0c03627
  108. N. Mahmood, Z. Yuan, J. Schmidt, and C. C Xu, "Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review", Renew. Sustain. Energy Rev., 60, 317 (2016). https://doi.org/10.1016/j.rser.2016.01.037
  109. H. Jeong, J. Park, S. Kim, J. Lee, and N. Ahn, "Compressive viscoelastic properties of softwood Kraft lignin-based flexible polyurethane foams", Fiber Polym., 14, 1301 (2013). https://doi.org/10.1007/s12221-013-1301-2
  110. R. Pucciariello, V. Villani, C. Bonini, M. D'Auria, and T. Vetere, "Physical properties of straw lignin-based polymer blends", Polymer, 45, 4159 (2004). https://doi.org/10.1016/j.polymer.2004.03.098
  111. H. Jeong, J. Park, S. Kim, J. Lee, and J. W. Cho, "Use of acetylated softwood kraft lignin as filler in synthetic polymers", Fiber Polym., 13, 1310 (2012). https://doi.org/10.1007/s12221-012-1310-6
  112. W. G. Glasser, J. S. Knudsen, and C.-S. Chang, "Multiphase materials with lignin. III. Polyblends with ethylene-vinyl acetate copolymers", J. Wood Chem. Technol., 8, 221 (1988). https://doi.org/10.1080/02773818808070681
  113. F. Chen, H. Dai, X. Dong, J. Yang, and M. Zhong, "Physical properties of lignin-based polypropylene blends", Polym. Compos., 32, 1019 (2011). https://doi.org/10.1002/pc.21087
  114. B. Kosikova, V. Demianova, and M. Kacurakova, "Sulfur-free lignins as composites of polypropylene films", J. Appl. Polym. Sci., 47, 1065 (1993). https://doi.org/10.1002/app.1993.070470613
  115. D. Kai, K. Zhang, S. S. Liow, and X. J. Loh, "New dual functional PHB-grafted lignin copolymer: synthesis, mechanical properties, and biocompatibility studies", ACS Appl. Bio Mater., 2, 127 (2018). https://doi.org/10.1021/acsabm.8b00445
  116. P. Mousavioun, W. O. S. Doherty, and G. George, "Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends", Ind. Crops Prod. 32, 656 (2010). https://doi.org/10.1016/j.indcrop.2010.08.001
  117. P. Mousavioun, P. J. Halley, and W. O. S. Doherty, "Thermophysical properties and rheology of PHB/lignin blends", Ind. Crop. Prod., 50, 270 (2013). https://doi.org/10.1016/j.indcrop.2013.07.026
  118. W. G. Glasser, V. Dave, and C. E. Frazier, "Molecular weight distribution of (semi-) commercial lignin derivatives", J. Wood Chem. Technol., 13, 545 (1993). https://doi.org/10.1080/02773819308020533
  119. K. Bahl, T. Miyoshi, and S. C. Jana, "Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds", Polymer, 55, 3825 (2014). https://doi.org/10.1016/j.polymer.2014.06.061
  120. T. Bova, C. D. Tran, M. Y. Balakshin, J. Chen, E. A. Capanema, and A. K. Naskar, "An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin-nitrile rubber", Electron. Suppl. Mater. Green Chem., 18, 5423 (2016).
  121. C. D. Tran, J. Chen, J. K. Keum, and A. K. Naskar, "A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers", Adv. Funct. Mater., 26, 2677 (2016). https://doi.org/10.1002/adfm.201504990
  122. Y. Ikeda, P, Junkong, H. Yokohama, R. Kitano, T. Phakkeeree, and A. Kato, "Reinforcing biofiller "Lignin" for high performance green natural rubber nanocomposites", RSC Adv., 7, 5222 (2017). https://doi.org/10.1039/C6RA26359C
  123. C. Miao and W. Y. Hamad, "Controlling lignin particle size for polymer blend applications", J. Appl. Polym. Sci., 134, 1 (2017).
  124. S. Laurichesse and L. Averous, "Chemical modification of lignins: towards biobased polymers", Prog. Polym. Sci., 39, 1266 (2014). https://doi.org/10.1016/j.progpolymsci.2013.11.004
  125. V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, "Progress in green polymer composites from lignin for multifunctional applications: a review", ACS Sustainable Chem. Eng., 2, 1072 (2014). https://doi.org/10.1021/sc500087z
  126. K. Bahl, N. Swanson, C. Pugh, and S. C. Jana, "Polybutadiene-g-polypentafluorostyrene as a coupling agent for ligninfilled rubber compounds", Polymer, 55, 6754 (2014). https://doi.org/10.1016/j.polymer.2014.11.008
  127. H. Wang, W. Liu, J. Huang, D. Yang, and X. Qiu, "Bioinspired engineering towards tailoring advanced lignin/rubber elastomers", Polymers, 10, 1033 (2018). https://doi.org/10.3390/polym10091033
  128. D. K. Setua, M. K. Shukla, V. Nigam, H. Singh, and G. N. Mathur, "Lignin-reinforced rubber composites", Polym. Compos., 21, 988 (2000). https://doi.org/10.1002/pc.10252
  129. P. Frigerio, L. Zoia, M. Orlandi, T. Hanel, and L. Castellani, "Application of sulphur-free lignins as a filler for elastomers: effect of hexamethylenetetramine treatment", Bioresources, 9, 1387 (2014).
  130. C. Jiang, H. He, X. Yao, P. Yu, L. Zhou, and D. Jia, "In situ dispersion and compatibilization of lignin/epoxidized natural rubber composites: Reactivity, morphology and property", J. Appl. Polym. Sci., 132, 1 (2015).
  131. K. Bahl and S. C. Jana, "Surface modificationof lignosulfonates for reinforcement of styrene-butadiene rubber compounds", J. Appl. Polym. Sci., 131, 1 (2014).
  132. H. Wang, W. Liu, J. Huang, D. Yang, and X. Qiu, "Bioinspired engineering towards tailoring advanced lignin/rubberelastomers", Polymers, 10, 1033 (2018). https://doi.org/10.3390/polym10091033
  133. J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, " Highly stretchable and tough hydrogels", Nature, 489, 133 (2012). https://doi.org/10.1038/nature11409
  134. C. N. Z. Schmitt, Y. Politi, A. Reinecke, and M. J. Harrington, "Role of sacrificial protein-metal bond exchange inmussel byssal thread self-healing", Biomacromolecules, 16, 2852 (2015). https://doi.org/10.1021/acs.biomac.5b00803
  135. H. J. Zhang, T. L. Sun, A. K. Zhang, Y. Ikura, T. Nakajima, T. Nonoyama, T. Kurokawa, O. Ito, H. Ishitobi, and J. P. Gong, "Tough physical double-network hydrogels based on amphiphilic triblock copolymers", Adv. Mater., 28, 4884 (2016). https://doi.org/10.1002/adma.201600466
  136. C. Jiang, H. He, H. Jiang, L. Ma, and D. M. Jia, "Nano-lignin filled natural rubber composites: preparation and characterization", Express Polym. Lett., 7, 480 (2013). https://doi.org/10.3144/expresspolymlett.2013.44
  137. F. Bertini, M. Canetti, A. Cacciamani, G. Elegir, M. Orlandi, and L. Zoia, "Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)- based biocomposites", Polym. Degrad. Stab., 97, 1979 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.03.009
  138. D. Barana, S. D. Ali, A. Salanti, M. Orlandi, L. Castellani, T. Hanel, and L. Zoia, "Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds", ACS Sustainable Chem. Eng., 4, 5258 (2016). https://doi.org/10.1021/acssuschemeng.6b00774