Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.2.159

Preparation of Biomass Based Carbon for Electrochemical Energy Storage Application  

Harshini Priyaa, V.S. (Department of Chemical Engineering, A.C.Tech., Anna University)
Saravanathamizhan, R. (Department of Chemical Engineering, A.C.Tech., Anna University)
Balasubramanian, N. (Department of Chemical Engineering, A.C.Tech., Anna University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.2, 2019 , pp. 159-169 More about this Journal
Abstract
The activated carbon materials were prepared from waste biomass by ultrasonic assisted chemical activation method (UCA), ultrasonic assisted physical activation method (UPA) and Manganese nitrogen doped carbon (Mn/N-C). The XRD result shows the turbostatic (fully disordered) structure. The cyclic voltammetry test was done at 50 mV/s using 1M sodium sulfate and the values of specific capacitance were found to be 93, 100 and 115 F/g for UCA, UPA and Mn/N-C respectively. The power density values for the samples UCA, UPA and Mn/N-C were found to be 46.04, 87.97 and 131.42 W/kg respectively. The electrochemical impedance spectroscopy was done at low frequency between 1 to 10 kHz. The Nyquist plot gives the resistant characteristics of the materials due to diffusional resistance at the electrode-electrolyte interface. The Energy Dispersive X-Ray Spectroscopyanalysis (EDAX) analysis showed that the percentage doping of nitrogen and manganese were 3.53 wt% and 9.44 wt% respectively. It is observed from the experiment Mn/N-C doped carbon show good physical and electrochemical properties.
Keywords
Activated carbon; Biomass; Electrochemical energy storage; Super capacitor; Ultrasonic assisted;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Praveen Kumar, T. Kesavan, G. Kalita, P. Ragupathi, T. N. Narayan and K. D. Patnayak, RSC Adv., 2014, 4, 38689-38697.   DOI
2 I. Demiral, A. Eryazici, S. Sevgi, Biomass and Bioenergy, 2012, 36, 43-49.   DOI
3 R. Sacithraa, M. Mohan, S. Vijayachitra, Int. J. Comp. Appl. 2013, 975-8887.
4 D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T. Sham, X. Sun, Y. Siyu, S Knights, Appl. Surf. Sci, 2011, 257(21), 9193-9198.   DOI
5 M. Harshiny, N. Samsudeen, R. J. Kameswara, M.Matheswaran, Int. J. hydrogen energy, 2017, 42, 26488-26495.   DOI
6 C. Nivedhini Iswarya, M. Matheswaran, Int. J. hydrogen energy, 2017, 42, 26475-26487.   DOI
7 T. Huang, Z. Qiu, D. Wu, Z. Hu, Int. J. Electrochem. Sci., 2015, 10, 6312-6323.
8 C.NivedhiniIswarya, M. Harshiny, S.Aiswarya Devi, M. Matheswaran, Matt. Chem. Phy., 2017, 195, 247-258.   DOI
9 A. Adekunle Moshood, A. Farid Nasir, Sust. Energy. Rev, 2015, 52, 1282-1293.   DOI
10 H.Lu, and X.S. Zhao, Sust. energy & fuels, 2017, 1, 1265-1281.   DOI
11 P. Lu, D. Xue, H. Yang & Y. Liu, Int. J. Smart and Nano Materials, 2013, 4(1), 2-26.   DOI
12 Mohammad-Khah and R. Ansari, Int.J. ChemTech Res, 2009, 1(4), 859-864.
13 Y. Huang, L.Peng,Yu Liu, G. Zhao, J. Y. Chen and G. Yu, Appl. Mater. Interfaces, 2016, 8, 15205-15215.   DOI
14 G. Aravindaraj Kannan, S. Amaresh, D.W. Kim, J. Power Sources, 2017, 337, 65-72.   DOI
15 C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, J. Power Sources, 2014, 258, 290-296.   DOI
16 M. Dhelipan, A. Arunchander, A.K. Sahu, D. Kalpana, J.Saudi Chem. Society, 2017, 21(4), 487-494.   DOI
17 W. Tang,Y. Zhang, Y. Zhong, T. Shen, X. Wang, X. Xia, J. Tua, Mater. Res. Bulletin, 2017, 88, 234-241.   DOI
18 N. R. Kim, Y. S. Yun, M. Y. Song, S. J. Hong, M. Kang, C. Leal, Y. Woo Park, and H.J. Jin, Appl. Mater. Interfaces, 2016, 8(5), 3175-3181.   DOI
19 Y. Hu, H. Liu, Q. Ke and J. Wang, J. Mater. Chem. A, 2014, 2(30), 11753-11758.   DOI
20 J. Jiang, J. Zhu, W. Ai, Z. Fan, X. Shen, C. Zou, J. Liu, H. Zhang and T. Yu, Energy Environ. Sci., 2014, 7(8), 2670-2679.   DOI
21 K. Sun, H. Wang, H. Peng, Y. Wu, G. Ma, Z. Lei, Int. J. Electrochem. Sci., 2015, 10 2000-2013.
22 J. Gomez, E. E. Kalu, J. Power Sources, 2013, 230, 218-224.   DOI
23 Y.Guo, Z. Shi, M. Chen, & C. Wang, J. Power Sources, 2014, 252, 235-243.   DOI
24 S. Sugashini, K. M. Meera Sheriffa Begum, New carbon materials, 2015, 30, 252-261.   DOI
25 S. Badie Girgis, M. Yassin Temerk, M. Mostafa Gadelrab and D. Ibrahim Abdullah, Carbon sci., 2007, 8(2), 95-100.
26 W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Electrochim. Acta, 2015, 176, 533-541.   DOI
27 E. Y. L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F. Chong, Electrochim. Acta, 2016, 192, 110-119.   DOI
28 H. Jin, X. Wang, Y. Shen, Z. Gu, J. Analytical and Appl. Pyrolysis, 2014, 110, 18-23.   DOI
29 S. Vafakhah, M. E. Bahrololoom, R. Bazarganlari, M. Saeedikhani, J. Env. Chem. Engg, 2014, 2, 356-361.   DOI
30 C. Zequine, C. K. Ranaweera, Z. Wang, Sweta Singh,T.Prashant, O. N. Srivastava, K. G.Bipin, K. Ramasamy, P. K. Kahol, P. R. Dvornic, R. K. Gupta, Sci. Reports, 2016, 6(31704), 1-10.
31 T.Huang, Z. Qiu, D. Wu, & Z. Hu, Int. J. Electrochem. Sci. 2015, 10, 6312-6323.
32 C.S. Yang, Y. S. Jang, & H. K. Jeong, Current Appl. Phys, 2014, 14(12),1616-1620.   DOI
33 K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta, 2015, 166, 1-11.   DOI
34 A. Saravanan, P. Senthil Kumar, R. Mugilan, Res. Chem. Intermed, 2016, 42(4), 3117-3146.   DOI
35 Skrabalak, S. E, Phys. chem. chem. phys, 2009, 11(25), 4930-4942.   DOI
36 I. A. Anukam, B.P. Goso, O.OmobolaOkoh, S.N. Mamphweli, J.of Chem. 2017, 6478389, 1-9.
37 S. Saqib Shams, L.S. Zhang, R. Hu, R. Zhang, J. Zhu, Mater. Letters, 2015, 161, 476-479.   DOI