Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.3.136

A Concise Review of Recent Application Progress and Future Prospects for Lignin as Biomass Utilization  

Hong, Seo-Hwa (Materials Chemistry & Engineering Laboratory, School of Polymer Science & Engineering, Dankook University)
Hwang, Seok-Ho (Materials Chemistry & Engineering Laboratory, School of Polymer Science & Engineering, Dankook University)
Publication Information
Elastomers and Composites / v.56, no.3, 2021 , pp. 136-151 More about this Journal
Abstract
Biomass lignin, a waste produced during the paper and bio-ethanol production process, is a cheap material that is available in large quantities. Thus, the interest in the valorization of biomass lignin has been increasing in industrial and academic areas. Over the years, lignin has been predominantly burnt as fuel to run pulping plants. However, less than 2% of the available lignin has been utilized for producing specialty chemicals, such as dispersants, adhesives, surfactants, and other value-added products. The development of value-added lignin-derived co-products should help make second generation biorefineries and the paper industry more profitable by valorizing lignin. Another possible approach towards value-added applications is using lignin as a component in plastics. However, blending lignin with polymers is not simple because the polarity of lignin molecules results in strong self-interactions. Therefore, achieving in-depth insights on lignin characteristics and structure will help in accelerating the development of lignin-based products. Considering the multipurpose characteristics of lignin for producing value-added products, this review will shed light on the potential applications of lignin and lignin-based derivatives on polymeric composite production. Moreover, the challenges in lignin valorization will be addressed.
Keywords
lignin; applications; fine chemicals; filler; composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Sun and J. Cheng, "Hydrolysis of lignocellulosic materials for ethanol production: a review", Bioresour. Technol., 83, 1 (2002).   DOI
2 M. N. Belgacem, A. Blayo, and A. Gandini, "Organosolv lignin as a filler in inks, varnishes and paints", Ind. Crop. Prod., 18, 145 (2003).   DOI
3 D. A. Baker and T. G. Rials, "Recent advances in low-cost carbon fiber manufacture from lignin", J. Appl. Polym. Sci., 130, 713 (2013).   DOI
4 H. Sadeghifar and D. S. Argyropoulos, "Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene", ACS Sustainable Chem. Eng., 3, 349 (2015).   DOI
5 M. R. Snowdon, A. K. Mohanty, and M. Misra, "A study of carbonized lignin as an alternative to carbon black", ACS Sustainable Chem. Eng., 2, 1257 (2014).   DOI
6 P. Myllytie, M. Misra, and A. K. Mohanty, "Carbonized lignin as sustainable filler in biobased poly(trimethylene terephthalate) polymer for injection molding applications", ACS Sustainable Chem. Eng., 4, 102 (2016).   DOI
7 P. Fatehi and J. Chen, "Extraction of technical lignins from pulping spent liquors, challenges and opportunities", In "Production of biofuels and chemicals from lignin", Eds. by Z. Fang, and R. L. Smith, Springer, 35 (2016).
8 S. Gillet, M. Aguedo, L. Petitjean, A. R. C. Morais, A. M. da Costa Lopes, R. M. Lukasik, and P. T. Anastas, "Lignin transformations for high value applications: towards targeted modifications using green chemistry", Green Chem., 19, 4200 (2017).   DOI
9 C. D. Scown, A. A. Gokhale, P. A. Willems, A. Horvath, and T. E. McKone, "Role of lignin in reducing life-cycle carbon emissions, water use, and cost for united states cellulosic biofuels", Environ. Sci. Technol., 48, 8446 (2014).   DOI
10 N. Mandlekar, A. Cayla, F. Rault, S. Giraud, F. Salaun, G. Malucelli, and J.-P. Guan, "An overview on the use of lignin and its derivatives in fire retardant polymer systems", In "Lignin - trends and applications", Eds. by M. Poletto, InTech, 2777 (2018).
11 S. Hu, S. Zhang, N. Pan, and Y.-L. Hsieh, "High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes", J. Power Sources, 270, 106 (2014).   DOI
12 A. Cayla, F. Rault, S. Giraud, F. Salaun, V. Fierro, and A. Celzard, "PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile", Polymers, 9, 331 (2016).   DOI
13 S. R. Yearla and K. Padmasree, "Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants", J. Exp. Nanosci., 11, 289 (2015).   DOI
14 E. Ahmad and K. K. Pant, "Lignin conversion: A key to the concept of lignocellulosic biomass-based integrated biorefinery", In "Waste biorefinery", Eds. by T. Bhaska, A. Pandey, S. V. Mohan, D.-J. Lee, and S. K. Khanal, Elsevier, 409 (2018).
15 J. E. Holladay, J. F. White, J. J. Bozell, and D. Johnson, "Top value-added chemicals from biomass; Volume II: results of screening for potential candidates from biorefinery lignin", Office of Scientific and Technical Information (OSTI), (2007).
16 M. A. Huneault and H. Li, "Morphology and properties of compatibilized polylactide/thermoplastic starch blends", Polymer, 48, 270 (2007).   DOI
17 G. Henriksson, "Lignin", In "Wood chemistry and wood biotechnology", Eds. by M. Ek, G. Gellerstedt, and G. Henriksson, Walter de Gruyter, 121 (2009).
18 A. Holmgren, G. Brunow, G. Henriksson, L. Zhang, and J. Ralph, "Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins", Org. Biomol. Chem., 4, 3456 (2006).   DOI
19 A. Tejado, C. Pena, J. Labidi, J. M. Echeverria, and I. Mondragon, "Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis", Bioresour. Technol., 98, 1655 (2007).   DOI
20 J. F. Kadla and S. Kubo, "Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin", Macromolecules, 36, 7803 (2003).   DOI
21 C. K. Yong, Y. C. Ching, C. H. Chuah, and N.-S. Liou, "Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite", Bioresources, 10, 2597 (2015).
22 X. Zhou, F. Zheng, C. Lv, L. Tang, K. Wei, X. Liu, G. Du, Q. Yong, and G. Xue, "Properties of formaldehyde-free environmentally friendly lignocellulosic compositesmade from poplar fibres and oxygen-plasma-treated enzymatic hydrolysis lignin", Compos. Part B Eng., 53, 369 (2013).   DOI
23 A. Tribot, G. Amer, M. Abdou Alio, H. de Baynast, C. Delattre, A. Pons, J.-D. Mathias, J.-M. Callois, C. Vial, P. Michaud, and C.-G. Dussap, "Wood-lignin: Supply, extraction processes and use as bio-based material", Eur. Polym. J., 112, 228 (2019).   DOI
24 Z. Strassberger, S. Tanase, and G. Rothenberg, "The pros and cons of lignin valorisation in an integrated biorefinery", RSC Adv., 4, 25310 (2014).   DOI
25 S. Laurichesse and L. Averous, "Chemical modification of lignins: Towards biobased polymers", Prog. Polym, Sci., 39, 1266 (2014).   DOI
26 M. K. R. Konduri and P. Fatehi, "Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite", ACS Sustainable Chem. Eng., 3, 1172 (2015).   DOI
27 J. Lange, "Renewable feedstocks: The problem of catalyst deactivation and its mitigation", Angew. Chem. Int. Ed., 54, 13186 (2015).   DOI
28 Y. Cao, S. S. Chen, S. Zhang, Y. S. Ok, B. M. Matsagar, K. C.-W. Wu, and D. C. W. Tsang, "Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery", Bioresour. Technol., 291, 121878 (2019).   DOI
29 G. E. Fredheim, S. M. Braaten, and B. E. Christensen, "Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering", J. Chromatogr. A, 942, 191 (2002).   DOI
30 J. K. Sameni, "Physico-chemical characterization of lignin isolated from industrial sources for advanced applications", Ph.D. Dissertation, University of Toronto, Canada. (2015).
31 H. Ye, Y. Zhang, and Z. Yu, "Effect of desulfonation of lignosulfonate on the properties of poly (lactic acid)/lignin composites", Bioresource, 3, 4810 (2017).
32 T. Aro and P. Fatehi, "Production and application of lignosulfonates and sulfonated lignin", ChemSusChem., 10, 1861 (2017).   DOI
33 D. Kun and B. Pukanszky, "Polymer/lignin blends: interactions, properties, applications," Eur. Polym. J., 93, 618 (2017).   DOI
34 A. Berlin and M. Balakshin, "Industrial lignins: analysis, properties, and applications", In "Bioenergy research: advances and applications", Eds by V. K. Gupta, C. P. Kubicek, J. Saddler, F. Xu, and M. G. Tuohy, Elsevier Book Series, Elsevier, 315 (2014).
35 B. Kosikova, V. Demianova, and M. Kacurakova, "Sulfur-free lignins as composites of polypropylene films", J. Appl. Polym. Sci., 47, 1065 (1993).   DOI
36 N. Graupner, "Application of lignin as natural adhesion promoter in cotton fibre-reinforced poly(lactic acid) (PLA) composites", J. Mater. Sci., 43, 5222 (2008).   DOI
37 A. E. Kazzaz, Z. Hosseinpour Feizi, and P. Fatehi, "Interaction of sulfomethylated lignin and aluminum oxide", Colloid Polym. Sci., 296, 1867 (2018).   DOI
38 Y. Qin, D. Yang, W. Guo, and X. Qiu, "Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry", J. Ind. Eng. Chem., 27, 192 (2015).   DOI
39 A. J. Ragauskas and C. G. Yoo, "Editorial: advancements in biomass recalcitrance: The use of lignin for the production of fuels and chemicals", Front. Energy Res., 6, 118 (2018).   DOI
40 A. Duval and M. Lawoko, "A review on lignin-based polymeric, micro- and nano-structured materials", React. Funct. Polym., 85, 78 (2014).   DOI
41 N. G. Lewis and E. Yamamoto, "Lignin: occurrence, biogenesis and biodegradation", Annu. Rev. Plant Physiol. Plant Mol. Biol., 41, 455 (1990).   DOI
42 A. Scalbert, "Ether linkage between phenolic acids and lignin fractions from wheat straw", Phytochem., 24, 1359 (1985).   DOI
43 W. O. S. Doherty, P. Mousavioun, and C. M. Fellows, "Value-adding to cellulosic ethanol: Lignin polymers", Ind. Crop. Prod., 33, 259 (2011).   DOI
44 J. C. Carvajal, A. Gomez, and C. A. Cardona, "Comparison of lignin extraction processes: Economic and environmental assessment", Bioresour. Technol., 214, 468 (2016).   DOI
45 J. H. Lora and W. G. Glasser, "Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials", J. Polym. Environ., 10, 39 (2002).   DOI
46 K. Bahl, N. Swanson, C. Pugh, and S. C. Jana, "Polybutadiene-g-polypentafluorostyrene as a coupling agent for ligninfilled rubber compounds", Polymer, 55, 6754 (2014).   DOI
47 W. G. Glasser, J. S. Knudsen, and C.-S. Chang, "Multiphase materials with lignin. III. Polyblends with ethylene-vinyl acetate copolymers", J. Wood Chem. Technol., 8, 221 (1988).   DOI
48 H. L'udmila, J. Michal, S. Andrea, and H. Ales, "Lignin, potential products and their market value", Wood Res., 6, 973 (2015).
49 S. Laurichesse and L. Averous, "Synthesis, thermal properties, rheological and mechanical behaviors of ligninsgrafted-poly(ε-caprolactone)", Polymer, 54, 3882 (2013).   DOI
50 D. Kai, K. Zhang, S. S. Liow, and X. J. Loh, "New dual functional PHB-grafted lignin copolymer: synthesis, mechanical properties, and biocompatibility studies", ACS Appl. Bio Mater., 2, 127 (2018).   DOI
51 D. K. Setua, M. K. Shukla, V. Nigam, H. Singh, and G. N. Mathur, "Lignin-reinforced rubber composites", Polym. Compos., 21, 988 (2000).   DOI
52 P. Frigerio, L. Zoia, M. Orlandi, T. Hanel, and L. Castellani, "Application of sulphur-free lignins as a filler for elastomers: effect of hexamethylenetetramine treatment", Bioresources, 9, 1387 (2014).
53 K. Bahl and S. C. Jana, "Surface modificationof lignosulfonates for reinforcement of styrene-butadiene rubber compounds", J. Appl. Polym. Sci., 131, 1 (2014).
54 H. Wang, W. Liu, J. Huang, D. Yang, and X. Qiu, "Bioinspired engineering towards tailoring advanced lignin/rubberelastomers", Polymers, 10, 1033 (2018).   DOI
55 C. N. Z. Schmitt, Y. Politi, A. Reinecke, and M. J. Harrington, "Role of sacrificial protein-metal bond exchange inmussel byssal thread self-healing", Biomacromolecules, 16, 2852 (2015).   DOI
56 K. Bahl, T. Miyoshi, and S. C. Jana, "Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds", Polymer, 55, 3825 (2014).   DOI
57 P. Mousavioun, W. O. S. Doherty, and G. George, "Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends", Ind. Crops Prod. 32, 656 (2010).   DOI
58 P. Mousavioun, P. J. Halley, and W. O. S. Doherty, "Thermophysical properties and rheology of PHB/lignin blends", Ind. Crop. Prod., 50, 270 (2013).   DOI
59 W. G. Glasser, V. Dave, and C. E. Frazier, "Molecular weight distribution of (semi-) commercial lignin derivatives", J. Wood Chem. Technol., 13, 545 (1993).   DOI
60 C. D. Tran, J. Chen, J. K. Keum, and A. K. Naskar, "A new class of renewable thermoplastics with extraordinary performance from nanostructured lignin-elastomers", Adv. Funct. Mater., 26, 2677 (2016).   DOI
61 P. Dilling, and M. S. Dimitri, U.S. patent 4,891,070 (1990).
62 Y. Ikeda, P, Junkong, H. Yokohama, R. Kitano, T. Phakkeeree, and A. Kato, "Reinforcing biofiller "Lignin" for high performance green natural rubber nanocomposites", RSC Adv., 7, 5222 (2017).   DOI
63 C. Miao and W. Y. Hamad, "Controlling lignin particle size for polymer blend applications", J. Appl. Polym. Sci., 134, 1 (2017).
64 V. K. Thakur, M. K. Thakur, P. Raghavan, and M. R. Kessler, "Progress in green polymer composites from lignin for multifunctional applications: a review", ACS Sustainable Chem. Eng., 2, 1072 (2014).   DOI
65 W. Z. Ouyang, Y. Huang, H. J. Luo, and D. S. Wang, "Preparation and properties of poly(lactic acid)/cellulolytic enzyme lignin/PGMA ternary blends", Chin. Chem. Lett., 23, 351 (2012).   DOI
66 A. Kamoun, A. Jelidi, and M. Chaabouni, "Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer-water reducer for cement", Cem. Concr. Res., 33, 995 (2003).   DOI
67 F. G. Calvo-Flores and J. A. Dobado, "Lignin as renewable raw material", ChemSusChem., 3, 1227 (2010).   DOI
68 Y. Ge and Z. Li, "Application of lignin and its derivatives in adsorption of heavy metal ions in water: A review", ACS Sustainable Chem. Eng., 6, 7181 (2018).   DOI
69 M. A. Chowdhury, "The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices", Int. J. Biol. Macromol., 65, 136 (2014).   DOI
70 H. Nagele, J. Pfitzer, E. Nagele, E. R. Inone, N. Eisenreich, W. Eckl, and P. Eyerer, "Arboform - a thermoplastic, processable material from lignin and natural fibers", In "Chemical modification, properties, and usage of lignin", Eds. by T. Q. Hu, Kluwer Academic/Plenum Publishers, pp 101 (2002).
71 H. Jeong, J. Park, S. Kim, J. Lee, and N. Ahn, "Compressive viscoelastic properties of softwood Kraft lignin-based flexible polyurethane foams", Fiber Polym., 14, 1301 (2013).   DOI
72 F. Chen, H. Dai, X. Dong, J. Yang, and M. Zhong, "Physical properties of lignin-based polypropylene blends", Polym. Compos., 32, 1019 (2011).   DOI
73 H. J. Zhang, T. L. Sun, A. K. Zhang, Y. Ikura, T. Nakajima, T. Nonoyama, T. Kurokawa, O. Ito, H. Ishitobi, and J. P. Gong, "Tough physical double-network hydrogels based on amphiphilic triblock copolymers", Adv. Mater., 28, 4884 (2016).   DOI
74 F. Bertini, M. Canetti, A. Cacciamani, G. Elegir, M. Orlandi, and L. Zoia, "Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)- based biocomposites", Polym. Degrad. Stab., 97, 1979 (2012).   DOI
75 D. Barana, S. D. Ali, A. Salanti, M. Orlandi, L. Castellani, T. Hanel, and L. Zoia, "Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds", ACS Sustainable Chem. Eng., 4, 5258 (2016).   DOI
76 T. Bova, C. D. Tran, M. Y. Balakshin, J. Chen, E. A. Capanema, and A. K. Naskar, "An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin-nitrile rubber", Electron. Suppl. Mater. Green Chem., 18, 5423 (2016).
77 F. Zamboni, S. Vieira, R. L. Reis, J. M. Oliveira, and M. N. Collins, "The potential of hyaluronic acid in immunoprotection and immunomodulation: chemistry, processing and function", Prog. Mater. Sci., 97, 97 (2018).   DOI
78 I. E. Raschip, E. G. Hitruc, and C. Vasile, "Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization", High Perform. Polym., 23, 219 (2011).   DOI
79 A. Rangan, M. V. Manjula, K. G. Satyanarayana, and R. Menon, "Lignin/nanolignin and their biodegradable composites," In "Biodegradable green composites", John Wiley & Sons, 167-198 (2016).
80 P. Mishra and R. Wimmer, "Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition", Ultrason. Sonochem., 35, 45 (2017).   DOI
81 E. Ten and W. Vermerris, "Recent developments in polymers derived from industrial lignin", J. Appl. Polym. Sci., 132, 42069 (2014).
82 V. K. Thakur and M. K. Thakur, "Recent advances in green hydrogels from lignin: a review", Int. J. Biol. Macromol., 72, 834 (2015).   DOI
83 H. A. Hegazi, "Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents", HBRC J., 9, 276 (2013).   DOI
84 T. C. Nirmale, B. B. Kale, and A. J. Varma, "A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery", Int. J. Biol. Macromol., 103, 1032 (2017).   DOI
85 C. Yu, F. Wang, C. Zhang, S. Fu, and L. A. Lucia, "The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent", React. Funct. Polym., 106, 137 (2016).   DOI
86 G. I. Taylor, "The formation of emulsions in definable fields of flow", Proc. R. Soc. Lond., Ser. A, 146, 501 (1934).   DOI
87 L. Passauer, K. Fischer, and F. Liebner, "Preparation and physical characterization of strongly swellable oligo (oxyethylene) lignin hydrogels", Holzforschung, 65, 309 (2011).   DOI
88 X. Guo, S. Zhang, and X. Shan, "Adsorption of metal ions on lignin", J. Hazard. Mater., 151, 134 (2008).   DOI
89 S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, and J. L. Scott, "Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid", Green Chem., 11, 339 (2009).   DOI
90 G. Szabo, V. Romhanyi, D. Kun, K. Renner, and B. Pukanszky, "Competitive interactions in aromatic polymer/ lignosulfonate blends", ACS Sustainable Chem. Eng., 5, 410 (2017).   DOI
91 H. Wang, W. Chen, X. Zhang, Y. Wei, A. Zhang, S. Liu, X. Wang, and C. Liu, "Structural changes of bagasse during the homogeneous esterification with maleic anhydride in ionic liquid 1-allyl-3-methylimidazolium chloride", Polymers 10, 433 (2018).   DOI
92 S. Sahoo, M. Misra, and A. K. Mohanty, "Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites", J. Appl. Polym. Sci., 127, 4110 (2013).   DOI
93 A. Tejado, C. Pena, J. Labidi, J. M. Echeverria, and I. Mondragon, "Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis", Bioresour. Technol., 98, 1655 (2007).   DOI
94 A. Lee and Y. Deng, "Green polyurethane from lignin and soybean oil through nonisocyanate reactions", Eur. Polym. J., 63, 67 (2015).   DOI
95 J. Moczo, E. Fekete, and B. Pukanszky, "Acid-base interactions and interphase formation in particulate-filled polymers", J. Adhes., 78, 861 (2002).   DOI
96 F. Flores-Cespedes, G. P. Martinez-Dominguez, M. Villafranca-Sanchez, and M. Fernandez-Perez, "Preparation and characterization of azadirachtin alginate-biosorbent based formulations: water release kinetics and photodegradation study", J. Agric. Food Chem., 63, 8391 (2015).   DOI
97 H.-W. Kammer, "Surface and Interfacial Tension of polymer melts-thermodynamic theory of the interface between immiscible polymers", Zeitschrift fur Physikalische Chemie, 2580, 1149 (1977).   DOI
98 I. Fortelny, P. Kamenicka, and J. Kovar, "Effect of the viscosity of components on the phase structure and impact strength of polypropylene/ethylene-propylene elastomer blends", Angew. Makromol. Chem., 164, 125 (1988).   DOI
99 K. Choo, Y. Ching, C. Chuah, S. Julai, and N.-S. Liou, "Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber", Materials, 9, 644 (2016).   DOI
100 H. Wang, X. Zhang, Y. Wei, A. Zhang, C. Liu, and R. Sun, "Homogeneous esterification mechanism of bagasse modified with phthalic anhydride in ionic liquid, part 3: structural transformation of lignins", Bioresources, 12, 4062 (2017).
101 T. Aso, K. Koda, S. Kubo, T. Yamada, I. Nakajima, and Y. Uraki, "Preparation of novel lignin-based cement dispersants from isolated lignins", J. Wood Chem. Technol., 33, 286 (2013).   DOI
102 P. Figueiredo, K. Lintinen, J. T. Hirvonen, M. A. Kostiainen, and H. A. Santos, "Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications", Prog. Mater. Sci., 93, 233 (2018).   DOI
103 W. K. El-Zawawy, "Preparation of hydrogel from green polymer", Polym. Adv. Technol., 16, 48 (2005).   DOI
104 N. Mahmood, Z. Yuan, J. Schmidt, and C. C Xu, "Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review", Renew. Sustain. Energy Rev., 60, 317 (2016).   DOI
105 C. Sasaki, M. Wanaka, H. Takagi, S. Tamura, C. Asada, and Y. Nakamura, "Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin", Ind. Crop. Prod., 43, 757 (2013).   DOI
106 C. Asada, S. Basnet, M. Otsuka, C. Sasaki, and Y. Nakamura, "Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials", Int. J. Biol. Macromol., 74, 413 (2015).   DOI
107 I. T. Kim, T. K. Sinha, J. Lee, Y. Lee, and J. S. Oh, "Ultrasonic treatment: An Acid-free green approach toward preparing high performance activated carbon from lignin", Ind. Eng. Chem. Res., 60, 2439 (2021).   DOI
108 R. Pucciariello, V. Villani, C. Bonini, M. D'Auria, and T. Vetere, "Physical properties of straw lignin-based polymer blends", Polymer, 45, 4159 (2004).   DOI
109 H. Jeong, J. Park, S. Kim, J. Lee, and J. W. Cho, "Use of acetylated softwood kraft lignin as filler in synthetic polymers", Fiber Polym., 13, 1310 (2012).   DOI
110 Y. Li and S. Sarkanen, "Thermoplastics with very high lignin contents", In "Lignin: historical, biological, and materials perspectives", Eds. by W. G. Glasser, R. A. Northey, and T. P. Schultz, ACS Symposium Series Vol. 742, American Chemical Society, 351 (1999).
111 A. Duval and M. Lawoko, "A review on lignin-based polymeric, micro- and nano-structured materials", React. Funct. Polym., 85, 78 (2014).   DOI
112 S. Laurichesse and L. Averous, "Chemical modification of lignins: towards biobased polymers", Prog. Polym. Sci., 39, 1266 (2014).   DOI
113 M. F. Rosa, B. Chiou, E. S. Medeiros, D. F. Wood, T. G. Williams, L. H. C. Mattoso, W. J. Orts, and S. H. Imam, "Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites", Bioresour. Technol., 100, 5196 (2009).   DOI
114 S. Suzuki, A. Ishikuro, D. Hirose, K. Ninomiya, and K. Takahashi, "Dual catalytic activity of an ionic liquid in lignin acetylation and deacetylation", Chem. Lett., 47, 860 (2018).   DOI
115 I. Spiridon, K. Leluk, A. M. Resmerita, and R. N. Darie, "Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering", Compos. Part B Eng., 69, 342 (2015).   DOI
116 V. Hemmila, J. Trischler, and D. Sandberg, "Lignin : an adhesive raw material of the future or waste of research energy?", In Proceedings of 9th Meeting of the Northern European Network for Wood Science and Engineering (WSE)", Eds. by C. Brischke, and L. Meyer, 98 (2013).
117 C. Jiang, H. He, H. Jiang, L. Ma, and D. M. Jia, "Nano-lignin filled natural rubber composites: preparation and characterization", Express Polym. Lett., 7, 480 (2013).   DOI
118 H. Wang, W. Liu, J. Huang, D. Yang, and X. Qiu, "Bioinspired engineering towards tailoring advanced lignin/rubber elastomers", Polymers, 10, 1033 (2018).   DOI
119 C. Jiang, H. He, X. Yao, P. Yu, L. Zhou, and D. Jia, "In situ dispersion and compatibilization of lignin/epoxidized natural rubber composites: Reactivity, morphology and property", J. Appl. Polym. Sci., 132, 1 (2015).
120 J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, " Highly stretchable and tough hydrogels", Nature, 489, 133 (2012).   DOI
121 S. M. Fonseca, T. Moreira, A. J. Parola, C. Pinheiro, and C. A. Laia, "PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices", Sol. Energy Mater. Sol. Cells, 159, 94 (2017).   DOI
122 S. S. Nair, H. Chen, Y. Peng, Y. Huang, and N. Yan, "Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties", ACS Sustainable Chem. Eng., 6, 10058 (2018).   DOI
123 K. Sahakaro, N. Naskar, R. N. Datta, and J. W. M. Noordermeer, "Blending of NR/BR/EPDM by reactive processing for tire sidewall applications. I. Preparation, cure characteristics and mechanical properties", J. Appl. Polym. Sci., 103, 2538 (2006).   DOI
124 F. Sarasini, J. Tirillo, D. Puglia, F. Dominici, C. Santulli, K. Boimau, T. Valente, and L. Torre, "Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibres", Compos. Struct., 167, 20 (2017).   DOI
125 M. Brodin, M. Vallejos, M. T. Opedal, M. C. Area, and G. Chinga-Carrasco, "Lignocellulosics as sustainable resources for production of bioplastics - A review", J. Clean. Prod., 162, 646 (2017).   DOI
126 C. Pouteau, P. Dole, B. Cathala, L. Averous, and N. Boquillon, "Antioxidant properties of lignin in polypropylene", Polym. Degrad. Stab., 81, 9 (2003).   DOI
127 H. Sixta, "Handbook of pulp", Wiley-VCH (2006).
128 J. Jung, L. Zhang, and J. Zhang, "Lead-acid battery technologies: fundamentals, materials, and applications", CRC Press (2015).
129 S. V. Gnedenkov, D. P. Opra, L. A. Zemnukhova, S. L. Sinebryukhov, I. A. Kedrinskii, O. V. Patrusheva, A. Grossman, and V. Wilfred, "Lignin-based polymers and nanomaterials", Curr. Opin. Biotechnol., 56, 112 (2018).
130 W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang, and W. Huang, "Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance", Electrochim. Acta., 176, 1136 (2015).   DOI
131 W. G. Glasser, "Classification of lignin according to chemical and molecular structure", In "Lignin historical, biological, and materials perspectives", Eds. by W. G. Glasser, R. A. Northey, and T. P. Schultz, ACS Symposium Series, Vol. 742, American Chemical Society, 216 (1999).
132 R. W. Whetten, J. J. Mackay, and R. R. Sederoff, "Recent advances in understanding lignin biosynthesis", Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 585 (1998).   DOI
133 A. Vishtal and A. Kraslawski, "Challenges in industrial applications of technical lignins", Bioresources, 6, 3547 (2011).   DOI
134 P. Alvira, E. Tomas-Pejo, M. Ballesteros, and M. J. Negro, "Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review", Bioresour. Technol., 101, 4851 (2010).   DOI
135 J. J. Meister, "Modification of lignin", J. Macromol. Sci., Polym. Rev., 42, 235 (2002).   DOI
136 A. Shrotri, H. Kobayashi, and A. Fukuoka, "Catalytic conversion of structural carbohydrates and lignin to chemicals", In "Advances in catalysis", Eds. by M. Dieguez, Elsevier Book Series, Elsevier, 59 (2017).
137 J. H. Lora and W. G. Glasser, "Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials", J. Polym. Environ., 10, 39 (2002).   DOI
138 N. Smolarski, "High-value opportunities for lignin: unlocking its potential", Frost & Sullivan, November 07, (2012).