• 제목/요약/키워드: Biofuel

검색결과 206건 처리시간 0.029초

Global Functional Analysis of Butanol-Sensitive Escherichia coli and Its Evolved Butanol-Tolerant Strain

  • Jeong, Haeyoung;Lee, Seung-Won;Kim, Sun Hong;Kim, Eun-Youn;Kim, Sinyeon;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1171-1179
    • /
    • 2017
  • Butanol is a promising alternative to ethanol and is desirable for use in transportation fuels and additives to gasoline and diesel fuels. Microbial production of butanol is challenging primarily because of its toxicity and low titer of production. Herein, we compared the transcriptome and phenome of wild-type Escherichia coli and its butanol-tolerant evolved strain to understand the global cellular physiology and metabolism responsible for butanol tolerance. When the ancestral butanol-sensitive E. coli was exposed to butanol, gene activities involved in respiratory mechanisms and oxidative stress were highly perturbed. Intriguingly, the evolved butanol-tolerant strain behaved similarly in both the absence and presence of butanol. Among the mutations occurring in the evolved strain, cis-regulatory mutations may be the cause of butanol tolerance. This study provides a foundation for the rational design of the metabolic and regulatory pathways for enhanced biofuel production.

곤충 유래 바이오디젤의 국내 생산 가능성에 관한 고찰 (Prospects of Insect Biodiesel Production in Korea: A review)

  • 박조용
    • 한국응용과학기술학회지
    • /
    • 제36권4호
    • /
    • pp.1399-1409
    • /
    • 2019
  • 바이오디젤은 신재생연료이면서 환경 친화적인 수송용 액상 바이오연료이다. 곤충은 새로운 바이오디젤 원료로 여겨지고 있다. 특히, 동애등에는 높은 지질을 함유하고 있어 재생가능한 바이오디젤 원료이다. 동애등에 유래 바이오디젤은 포화지방산 함량이 높고 다불포화지방산 함량이 낮아 품질이 좋은 바이오디젤을 만들 수 있다. 동애등에 유래 바이오디젤은 EN 14214의 대부분 품질기준을 만족한다. 동애등에는 기존의 식물성 원료, 미세조류에 비해 지질 수율이 높아 바이오디젤 생산성이 높다. 본 논문에서는 곤충 유래 바이오디젤의 전반적인 생산 방법과 품질 특성에 대해 서술하였다.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • 제30권1호
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

저주파 초음파를 이용한 미세조류 파쇄 (Cell Disruption of Microalgae by Low-Frequency Non-Focused Ultrasound)

  • 배명권;최준혁;박종락;정상화
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.111-118
    • /
    • 2020
  • Recently, bioenergy research using microalgae, one of the most promising biofuel sources, has attracted much attention. Cell disruption, which can be classified as physical or chemical, is essential to extract functional ingredients from microalgae. In this study, we investigated the cell disruption efficiency of Chlorella sp. using low-frequency non-focused ultrasound (LFNFU). This is a continuously physical method that is superior to chemical methods with respect to environmental friendliness and low processing cost. A flat panel photobioreactor was employed to cultivate Chlorella sp. and its growth curve was fitted both with Logistic and Gompertz models. The temporal change in cell reduction by cell disruption using LFNFU was fitted with a Logistic model. The experimental conditions that were investigated were the initial concentration of microalgal cells, relative amplitude of output ultrasound waves, processing volume of microalgal cells, and initial pH value. The optimal conditions for the most efficient cell disruption were determined through the various tests.

바이오연료의 디젤엔진 적용에 관한 실험연구 (An Experimental Study on Application of Biofuel to Diesel Engine)

  • 염정국;하형수
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.29-37
    • /
    • 2013
  • Compared to gasoline engines, diesel engines with a relatively simple ignition system are more advantageous in the application of biodeisel fuel to engine. Then in this study the comparative analysis on the spray characteristics and combustion emissions characteristic between the biodiesel(soybean oil) and diesel, the fuel for commercial diesel engine, was performed with common rail injection system. Injection pressure and ratio of biodiesel blended fuel were selected as main experimental variables. Consequently, it can be found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of soybean oil and diesel at a fixed injection pressure, in particular, soot creation in combustion emissions in the region of low pressure was greatly affected by the blend ratio of soybean oil, however, the creation in the region of high pressure was almost unaffected by the blend ratio because of promoted atomization.

Potential of the kNN Method for Estimation and Monitoring off-Reserve Forest Resources in Ghana

  • Kutzer, Christian
    • Journal of Forest and Environmental Science
    • /
    • 제24권3호
    • /
    • pp.151-154
    • /
    • 2008
  • Dramatic price increases of fossil fuels and the economic development of emerging nations accelerates the transformation of forest lands into monocultures, e.g. for biofuel production. On this account, cost efficient methods to enable the monitoring of land resources has become a vital ambition. The application of remote sensing techniques has become an integral part of forest attribute estimation and mapping. The aim of this study was to evaluate the potentials of the kNN method by combining terrestrial with remotely sensed data for the development of a pixel-based monitoring system for the small scaled mosaic of different land use types of the off-reserve forests of the Goaso forest district in Ghana, West Africa. For this reason, occurrence and distribution of land use types like cocoa and non-timber forest resources, such as bamboo and raphia palms, were estimated, applying the kNN method to ASTER satellite data. Averaged overall accuracies, ranging from 79% for plantain, to 83% for oil palms, were found for single-attribute classifications, whereas a multi-attribute approach showed overall accuracies of up to 70%. Values of k between 3 and 6 seem appropriate for mapping bamboo. Optimisation of spectral bands improves results considerably.

  • PDF

초단열 압축스파크 점화개질기를 이용한 바이오 합성가스 생산 연구 (Research of Biofuel Syngas Production Using Superadiabatic Compression Spark Ignition Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.42-49
    • /
    • 2010
  • Increasing environmental concerns regarding the use of fossil fuels and global wanning have prompted researcher to investigate alternative fuels. The purpose of this study is to investigate the syngas production by biogas reforming using a compression spark ignition engine. The parametric screening studies were carried out according to the variations of oxygen enrichment rate, biogas $CO_2$ ratio, intake gas temperature, and engine revolution. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas $CO_2$ ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100% only, generation of hydrogen and carbon monoxide was 58% and 17%, respectively. However when the biogas $CO_2$ ratio was 40%, hydrogen and carbon monoxide concentration were about 20% each.

글리세롤을 이용한 복합영양소에서 Chlorella sp., Nannochloris sp.와 Botryococcus braunii 의 바이오매스 생산량과 오일 함유량 비교 (Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol)

  • 최희정
    • 한국물환경학회지
    • /
    • 제30권5호
    • /
    • pp.469-476
    • /
    • 2014
  • The focus of this study was to observe the growth of Chlorella sp., Nannochloris sp., and Botryococcus braunii under mixotrophic conditions (i.e., added glycerol) with the aim of increasing the growth of biomass and algae oil content. A significant growth of biomass was obtained when grown in glycerol rich environment comparing to autotrophic conditions. 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAG in Botryococcus braunii was reached in the growth medium with 10 g/L glycerol and Chlorella sp., Nannochloris sp. with 2 g/L glycerol. The content of saturated fatty acids of Chlorella sp., Nannochloris sp., and Botryococcus braunii was found to be 34.94, 14.23 and 13.39%, and the amount of unsaturated fatty acids was 65.06, 85.78 and 86.61% of total fatty acids, respectively. The fatty acid profiles of the oil for the culture possibility met the necessary requirements and are, therefore, promising resource for biofuel production.

해외 신재생연료 의무혼합제도 비교분석 연구 (Study on Comparison of Nenewable Fuel Standard Policy on Global)

  • 임의순;김재곤;정충섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.150.1-150.1
    • /
    • 2011
  • The global rise of greenhouse gas(GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. Renewable fuel policies were historically motivated by energy security concerns, and to promoted agricultural industries. In the last decade, biofuels have also been discussed as low or net-zero carbon soures of energy for transportation. Hence, the development of biofuels has been supported by a range of policy instruments, including volumetric targets or blending mandates, tax incentives or penalties, preferential government purchasing, government funded research, development in world-wide. As one of the most powerfuel instruments, renewable fuel mandates require fuel producers to produce a pre-defined amount(or share) of biofuels and blend them with petroleum fuel. In this study, we reviewed Renewable Fuel Standard(RFS, USA), Renewable Transport Fules Obligation (RTFO, UK) as a renewable fuel mandate policy to reduce GHG. This includes not only mandate system for blending of biofuels in transport fuels, but also sustainability to use biofuels in this system.

  • PDF

부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산 (Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth)

  • 박봉제;박혜민;윤현식
    • KSBB Journal
    • /
    • 제31권1호
    • /
    • pp.79-84
    • /
    • 2016
  • Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.