Browse > Article
http://dx.doi.org/10.7841/ksbbj.2016.31.1.79

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth  

Park, Bong-Je (Department of Biological Engineering, Inha University)
Park, Hye Min (Department of Biological Engineering, Inha University)
Yun, Hyun Shik (Department of Biological Engineering, Inha University)
Publication Information
KSBB Journal / v.31, no.1, 2016 , pp. 79-84 More about this Journal
Abstract
Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.
Keywords
Water hyacinth; Lignocellulosic biomass; Biobutanol; Clostridium beijerinckii; $CaCO_3$ alginate bead;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aswathy, U., R. K. Sukumaran, G. L. Devi, K. P. Rajasree, R. R. Singhania, and A. Pandey (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresource Technol. 101: 925-930.   DOI
2 Annous, B., and H. Blaschek (1990) Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microb. 56: 2559-2561.
3 Lee, K. Y., I. B. Hwang, and T. R. Heo (1997) Enhancement of cultivation efficiency of Bifidobacterium longum using calcium carbonate buffer system. Korean J. Food. Sci. Technol. 29: 126-132.
4 Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pHstat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98: 263-268.   DOI
5 Agarwal, A. K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33: 233-271.   DOI
6 Escobar, J. C., E. S. Lora, O. J. Venturini, E. E. Yanez, E. F. Castillo, and O. Almazan (2009) Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev. 13: 1275-1287.   DOI
7 Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresource Technol. 102: 2112-2117.   DOI
8 Rubin, E. M. (2008) Genomics of cellulosic biofuels. Nature 454: 841-845.   DOI
9 Veronica, G., J. Pakkila, H. Ojamo, E. Muurinen, and R. L. Keiski (2011) Challenges in biobutanol production: How to improve the efficiency? Renew. Sust. Energ. Rev. 15: 964-980.   DOI
10 Jones, D. T., and D. R. Woods (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524.
11 Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 37: 495-501.   DOI
12 Ahn, J. H., B. I. Sang, and Y. Um (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technol. 102: 4934-4937.   DOI
13 Lu, C., J. Zhao, S. T. Yang, and D. Wei (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technol. 104: 380–387.   DOI
14 Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. H. Kim, and K. S. Jung (2008) Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228.   DOI
15 Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494.   DOI
16 Festel, G. W. (2008) Biofuels–economic aspects. Chem. Eng. Technol. 31: 715-720.   DOI
17 Jork, N., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, GTC Sequencing Center Production, Finshig, and Bioinformatics Teams, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838.   DOI
18 Ezeji, T., and H. P. Blaschek (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and valueadded products by solventogenic Clostridia. Bioresource Technol. 99: 5232-5242.   DOI
19 Thang, V. H., K. Kanda, and G. Kobayashi (2010) Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl. Biochem. Biotechnol. 161: 157-170.   DOI
20 Al-Shorgani, N. K., M. S. Kalil, and W. M. Yusoff (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 35: 817-826.   DOI
21 Gopal, B. (1987) Water hyacinth. Elsevier Science Publishers, Amsterdam, Netherlands.
22 Hronich, J. E., L. Martin, J. Plawsky, and H. R. Bungay (2008) Potential of Eichhornia crassipes for biomass refining. J. Ind. Microbiol. Biot. 35: 393-402.   DOI
23 Narain, S., C. S. P. Ojha, S. K. Mishra, U. C. Chaube, and P. K. Sharma (2011) Cadmium and chromium removal by aquatic plant. Int. J. Environ. Sci. 1: 1297-1304.
24 Kim, B. Y., S. K. Lee, C. S. Kwean, K. H. So, and E. H. Yun (1991) Studies on the purification of sewage water by water hyacinth (Eichhornia crassipes). Korean J. Environ. Agric. 10: 1.
25 Gunnarsson, C. C. and C. M. Petersen (2007) Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage. 27: 117-129.   DOI
26 Mishima, D., M. Tateda, M. Ike, and M. Fujita (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technol. 97: 2166-2172.   DOI
27 Girisuta, B., B. Danon, R. Manurung, L. P. B. M. Janssen, and H. J. Heeres (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource Technol. 99: 8367-8375.   DOI
28 Nigam, J. (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97: 107-116.   DOI
29 Mishima, D., M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol. 99: 2495-2500.   DOI