Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02021

Global Functional Analysis of Butanol-Sensitive Escherichia coli and Its Evolved Butanol-Tolerant Strain  

Jeong, Haeyoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Seung-Won (SeqGenesis)
Kim, Sun Hong (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Eun-Youn (School of Basic Sciences, Hanbat National University)
Kim, Sinyeon (Department of Bioscience and Biotechnology, Konkuk University)
Yoon, Sung Ho (Department of Bioscience and Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.6, 2017 , pp. 1171-1179 More about this Journal
Abstract
Butanol is a promising alternative to ethanol and is desirable for use in transportation fuels and additives to gasoline and diesel fuels. Microbial production of butanol is challenging primarily because of its toxicity and low titer of production. Herein, we compared the transcriptome and phenome of wild-type Escherichia coli and its butanol-tolerant evolved strain to understand the global cellular physiology and metabolism responsible for butanol tolerance. When the ancestral butanol-sensitive E. coli was exposed to butanol, gene activities involved in respiratory mechanisms and oxidative stress were highly perturbed. Intriguingly, the evolved butanol-tolerant strain behaved similarly in both the absence and presence of butanol. Among the mutations occurring in the evolved strain, cis-regulatory mutations may be the cause of butanol tolerance. This study provides a foundation for the rational design of the metabolic and regulatory pathways for enhanced biofuel production.
Keywords
Butanol; tolerance; evolution; transcriptome; Escherichia coli;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG. 2012. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid beta-oxidation pathway. Biotechnol. Lett. 34: 463-469.   DOI
2 Shen CR, Liao JC. 2008. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the ketoacid pathways. Metab. Eng. 10: 312-320.   DOI
3 Dong H, Zhao C, Zhang T, Lin Z, Li Y, Zhang Y. 2016. Engineering Escherichia coli cell factories for n-butanol production. Adv. Biochem. Eng. Biotechnol. 155: 141-163.
4 Zhang H, Chong H, Ching CB, Song H, Jiang R. 2012. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl. Microbiol. Biotechnol. 94: 1107-1117.   DOI
5 Lee JY, Yang KS, Jang SA, Sung BH, Kim SC. 2011. Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol. Bioeng. 108: 742-749.   DOI
6 Reyes LH, Almario MP, Kao KC. 2011. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 6: e17678.   DOI
7 Bennik MH, Pomposiello PJ, Thorne DF, Demple B. 2000. Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J. Bacteriol. 182: 3794-3801.   DOI
8 Wray GA. 2007. The evolutionary significance of cisregulatory mutations. Nat. Rev. Genet. 8: 206-216.
9 Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A, et al. 2010. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl. Environ. Microbiol. 76: 1935-1945.   DOI
10 Tomas CA, Welker NE, Papoutsakis ET. 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69: 4951-4965.   DOI
11 Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, et al. 2010. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol. Syst. Biol. 6: 449.
12 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.   DOI
13 Stern DL, Orgogozo V. 2008. The loci of evolution: how predictable is genetic evolution? Evolution 62: 2155-2177.   DOI
14 Jeong H, Kim S, Han S, Kim M, Lee K. 2012. Changes in membrane fatty acid composition through proton-induced fabF mutation enhancing 1-butanol tolerance in E. coli. J. Korean Phys. Soc. 61: 227-233.   DOI
15 Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, et al. 2009. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243-1247.   DOI
16 Jeong H, Han J. 2010. Enhancing the 1-butanol tolerance in Escherichia coli through repetitive proton beam irradiation. J. Korean Phys. Soc. 56: 2041-2045.   DOI
17 Garwin JL, Klages AL, Cronan JE Jr. 1980. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J. Biol. Chem. 255: 3263-3265.
18 Yoon SH, Han MJ, Jeong H, Lee CH, Xia XX, Lee DH, et al. 2012. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biol. 13: R37.   DOI
19 Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131.   DOI
20 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5: R80.   DOI
21 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47.   DOI
22 Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36.   DOI
23 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43: D447-D452.   DOI
24 Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382.   DOI
25 Shannon PT, Reiss DJ, Bonneau R, Baliga NS. 2006. The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 7: 176.   DOI
26 Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, et al. 2013. opm: an R package for analysing OmniLog$^{(R)}$ phenotype microarray data. Bioinformatics 29: 1823-1824.   DOI
27 Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, et al. 2011. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res. 21: 1892-1904.   DOI
28 Hesslinger C, Fairhurst SA, Sawers G. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27: 477-492.   DOI
29 Volkers RJ, Ballerstedt H, Ruijssenaars H, de Bont JA, de Winde JH, Wery J. 2009. TrgI, toluene repressed gene I, a novel gene involved in toluene-tolerance in Pseudomonas putida S12. Extremophiles 13: 283-297.   DOI
30 Park SJ, Gunsalus RP. 1995. Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. J. Bacteriol. 177: 6255-6262.   DOI
31 Knoshaug EP, Zhang M. 2009. Butanol tolerance in a selection of microorganisms. Appl. Biochem. Biotechnol. 153: 13-20.   DOI
32 Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, et al. 2008. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 26: 375-381.   DOI
33 Lutke-Eversloh T, Bahl H. 2011. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr. Opin. Biotechnol. 22: 634-647.   DOI
34 Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, et al. 2012. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3: e00314-12.
35 Janausch IG, Zientz E, Tran QH, Kroger A, Unden G. 2002. $C_4$-dicarboxylate carriers and sensors in bacteria. Biochim. Biophys. Acta 1553: 39-56.   DOI
36 Yoon SH, Jeong H, Kwon S-K, Kim JF. 2009. Genomics, biological features, and biotechnological applications of Escherichia coli B: "Is B for better?!", pp. 1-17. In Lee SY (ed.). Systems Biology and Biotechnology of Escherichia coli. Springer, Berlin, Germany.
37 Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, et al. 2008. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10: 305-311.   DOI
38 Dunlop MJ. 2011. Engineering microbes for tolerance to next-generation biofuels. Biotechnol. Biofuels 4: 32.   DOI
39 Rowley G, Spector M, Kormanec J, Roberts M. 2006. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 4: 383-394.   DOI
40 Darwin AJ. 2005. The phage-shock-protein response. Mol. Microbiol. 57: 621-628.   DOI
41 Doerrler WT, Sikdar R, Kumar S, Boughner LA. 2013. New functions for the ancient DedA membrane protein family. J. Bacteriol. 195: 3-11.   DOI
42 Kumar S, Doerrler WT. 2014. Members of the conserved DedA family are likely membrane transporters and are required for drug resistance in Escherichia coli. Antimicrob. Agents Chemother. 58: 923-930.   DOI
43 Sikdar R, Simmons AR, Doerrler WT. 2013. Multiple envelope stress response pathways are activated in an Escherichia coli strain with mutations in two members of the DedA membrane protein family. J. Bacteriol. 195: 12-24.   DOI
44 Jair KW, Yu X, Skarstad K, Thony B, Fujita N, Ishihama A, Wolf RE Jr. 1996. Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J. Bacteriol. 178: 2507-2513.   DOI