Browse > Article
http://dx.doi.org/10.15681/KSWE.2014.30.5.469

Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol  

Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
Publication Information
Abstract
The focus of this study was to observe the growth of Chlorella sp., Nannochloris sp., and Botryococcus braunii under mixotrophic conditions (i.e., added glycerol) with the aim of increasing the growth of biomass and algae oil content. A significant growth of biomass was obtained when grown in glycerol rich environment comparing to autotrophic conditions. 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAG in Botryococcus braunii was reached in the growth medium with 10 g/L glycerol and Chlorella sp., Nannochloris sp. with 2 g/L glycerol. The content of saturated fatty acids of Chlorella sp., Nannochloris sp., and Botryococcus braunii was found to be 34.94, 14.23 and 13.39%, and the amount of unsaturated fatty acids was 65.06, 85.78 and 86.61% of total fatty acids, respectively. The fatty acid profiles of the oil for the culture possibility met the necessary requirements and are, therefore, promising resource for biofuel production.
Keywords
Biomass; Biooil; Glycerol; Microalgae; Optical Panel Photobioreactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Andrade, M. R. and Costa, J. A. V. (2007). Mixotrophic Cultivation of Microalga Spirulina platensis using Molasses as Organic Substrate, Aquaculture, 264(1-4), pp. 130-134.   DOI   ScienceOn
2 AOCS Official Method (Cd 3d-63). (2003). Acid Value, Official Methods and Recommended Practices of the AOCS, Fifth Edn. AOCS, Champaign, Illinois.
3 Brennan, L. and Owende, P. (2010). Biofuels from Microalgae - A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products, Renewable and Sustainable Energy Reviews, 14(2), pp. 557-577.   DOI   ScienceOn
4 Biller, P., Friedman, C., and Ross, A. B. (2013). Hydrothermal Microwave Processing of Microalgae as a Pre-treatment and Extraction Technique for Bio-fuels and Bio-products, Bioresource Technology, 136, pp. 188-195.   DOI   ScienceOn
5 Choi, H. J., Lee, J. M., and Lee, S. M. (2013). A Novel Optical Panel Photobiorector for Cultivation of Microalgae, Water Science and Technology, 67(11), pp. 2543-2548.   DOI
6 Cagliari, A., Margis, R., Maraschin, F. S., Turchetto-Zolet, A. C., Loss, G., and Margis-Pinheiro, M. (2011). Biosynthesis of Triacylglycerols in Plants and Algae, International Journal of Plant Biology, 2(e10), pp. 40-52. doi:10.4081/pb.2011.e10   DOI
7 CEN, EN 14103. (2011). Fat and Oil Derivatives - Fatty Acid Methyl Esters (FAME) - Determination of Ester and Linolenic Acid Methylester Contents, ONORM, Wien.
8 Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306.   DOI   ScienceOn
9 Choi, H. J. and Lee, S. M. (2014). Effect of Optical Panel Thickness for Nutrient Removal and Cultivation of Microalgae in the Photobioreactor, Bioprocess and Biosystems Engineering, 37(4), pp. 697-705.   DOI   ScienceOn
10 Chojnacka, K. and Noworyta, A. (2004). Evaluation of Spirulina sp. Growth in Photoautotrophic, Heterotrophic and Mixotrophic Cultures, Enzyme and Microbial Technology, 34(5), pp. 461-465.   DOI   ScienceOn
11 Demirbas, A. (2009). Production of Biodiesel from Algae Oils, Energy Source, Part A, 31(2), pp. 163-168.
12 Gong, J. and Jiang, M. (2011). Biodiesel Production with Microalgae as Feedstock: from Strains to Biodiesel, Biotechnology Letters, 33(7), pp. 1269-1284.   DOI
13 Halim, R., Danquah, M. K., and Webley, P. A. (2012). Extraction of Oil from Microalgae of Biodiesel Production: A Review, Biotechnology Advances, 30(3), pp. 709-732.   DOI   ScienceOn
14 Hsieh, C. H. and Wu, W. T. (2009). A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae, Biochemical Engineering Journal, 46(3), pp. 300-305.   DOI   ScienceOn
15 Kong, W. B., Yang, H., Cao, Y. T., Song, H., Hua, S. F., and Xia, C. G. (2013). Effects of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris, Food Technology and Biotechnology, 51, pp. 62-69.
16 Li, X., Xu, H., and Wu, Q. (2007). Large-Scale Biodiesel Production from Microalga Chlorella protothecoides through Heterotrophic Cultivation in Bioreactors, Biotechnology and Bioengineering, 98(4), pp. 764-771.   DOI   ScienceOn
17 Lee, Y. C., Huh, Y. S., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Lee, J. S., Oh, Y. K., and Park, J. Y. (2013). Lipid Extractions from Docosahexaenoic Acid (DHA)-rich and Oleaginous Chlorella sp. Biomasses by Organicnanoclays, Bioresource Technology, 137, pp. 74-81.   DOI   ScienceOn
18 Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964.   DOI   ScienceOn
19 Lepage, G. and Roy, C. C. (1984). Improved Recovery of Fatty Acid through direct Transesterification without Prior Extraction or Purification, Journal of Lipid Research, 25(12), pp. 1391-1396.
20 Mata, T. M., Martins, A. A., and Caetano, N. S. (2012). Microalgae for Biodiesel Production and Other Applications; A Review, Renewable and Sustainable Energy Reviews, 14(1), pp. 217-232.
21 Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., and Cerutti, H. (2012). Metabolic and Gene Expression Changes Triggered by Nitrogen Deprivation in the Photoautotrophically Grown Microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169, Phytochemistry, 75, pp. 50-59.   DOI   ScienceOn
22 Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., and Kankamer, B. (2008). Second Generation Biofuels: High Efficiency Microalgae for Biodiesel Production, Bioenergy Research, 1(1), pp. 20-43.   DOI   ScienceOn
23 Xu, H., Miao, X., and Wu, Q. (2006). High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters, Journal of Biotechnology, 126(4), pp. 499-507.   DOI   ScienceOn
24 Sierra, E., Acien, F. G., Fernandez, J. M., Garcia, J. L., Gonzalez, C., and Molina, E. (2008). Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Journal, 138(1-3), pp. 136-147.   DOI   ScienceOn
25 Stainier, R. Y., Kunisawa, R., Mandel, M., and Choen, B. (1971). Purification and Properties of a Unicellular Blue-green Alga (order Chroococcales), Bacteriological Reviews, 35(2), pp. 171-205.
26 Wijffels, R. H. and Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels, Science, 329(5993), pp. 796-799.   DOI   ScienceOn