DOI QR코드

DOI QR Code

부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth

  • Park, Bong-Je (Department of Biological Engineering, Inha University) ;
  • Park, Hye Min (Department of Biological Engineering, Inha University) ;
  • Yun, Hyun Shik (Department of Biological Engineering, Inha University)
  • 투고 : 2016.02.21
  • 심사 : 2016.03.22
  • 발행 : 2016.03.31

초록

Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.

키워드

참고문헌

  1. Agarwal, A. K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33: 233-271. https://doi.org/10.1016/j.pecs.2006.08.003
  2. Escobar, J. C., E. S. Lora, O. J. Venturini, E. E. Yanez, E. F. Castillo, and O. Almazan (2009) Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev. 13: 1275-1287. https://doi.org/10.1016/j.rser.2008.08.014
  3. Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresource Technol. 102: 2112-2117. https://doi.org/10.1016/j.biortech.2010.08.051
  4. Rubin, E. M. (2008) Genomics of cellulosic biofuels. Nature 454: 841-845. https://doi.org/10.1038/nature07190
  5. Veronica, G., J. Pakkila, H. Ojamo, E. Muurinen, and R. L. Keiski (2011) Challenges in biobutanol production: How to improve the efficiency? Renew. Sust. Energ. Rev. 15: 964-980. https://doi.org/10.1016/j.rser.2010.11.008
  6. Jones, D. T., and D. R. Woods (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524.
  7. Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 37: 495-501. https://doi.org/10.1007/s10295-010-0695-8
  8. Ahn, J. H., B. I. Sang, and Y. Um (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technol. 102: 4934-4937. https://doi.org/10.1016/j.biortech.2011.01.046
  9. Lu, C., J. Zhao, S. T. Yang, and D. Wei (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technol. 104: 380–387. https://doi.org/10.1016/j.biortech.2011.10.089
  10. Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494. https://doi.org/10.1007/s00253-011-3629-0
  11. Festel, G. W. (2008) Biofuels–economic aspects. Chem. Eng. Technol. 31: 715-720. https://doi.org/10.1002/ceat.200700335
  12. Jork, N., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, GTC Sequencing Center Production, Finshig, and Bioinformatics Teams, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838. https://doi.org/10.1128/JB.183.16.4823-4838.2001
  13. Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. H. Kim, and K. S. Jung (2008) Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228. https://doi.org/10.1002/bit.22003
  14. Ezeji, T., and H. P. Blaschek (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and valueadded products by solventogenic Clostridia. Bioresource Technol. 99: 5232-5242. https://doi.org/10.1016/j.biortech.2007.09.032
  15. Thang, V. H., K. Kanda, and G. Kobayashi (2010) Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl. Biochem. Biotechnol. 161: 157-170. https://doi.org/10.1007/s12010-009-8770-1
  16. Al-Shorgani, N. K., M. S. Kalil, and W. M. Yusoff (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 35: 817-826. https://doi.org/10.1007/s00449-011-0664-2
  17. Gopal, B. (1987) Water hyacinth. Elsevier Science Publishers, Amsterdam, Netherlands.
  18. Narain, S., C. S. P. Ojha, S. K. Mishra, U. C. Chaube, and P. K. Sharma (2011) Cadmium and chromium removal by aquatic plant. Int. J. Environ. Sci. 1: 1297-1304.
  19. Kim, B. Y., S. K. Lee, C. S. Kwean, K. H. So, and E. H. Yun (1991) Studies on the purification of sewage water by water hyacinth (Eichhornia crassipes). Korean J. Environ. Agric. 10: 1.
  20. Gunnarsson, C. C. and C. M. Petersen (2007) Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage. 27: 117-129. https://doi.org/10.1016/j.wasman.2005.12.011
  21. Hronich, J. E., L. Martin, J. Plawsky, and H. R. Bungay (2008) Potential of Eichhornia crassipes for biomass refining. J. Ind. Microbiol. Biot. 35: 393-402. https://doi.org/10.1007/s10295-008-0333-x
  22. Mishima, D., M. Tateda, M. Ike, and M. Fujita (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technol. 97: 2166-2172. https://doi.org/10.1016/j.biortech.2005.09.029
  23. Girisuta, B., B. Danon, R. Manurung, L. P. B. M. Janssen, and H. J. Heeres (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource Technol. 99: 8367-8375. https://doi.org/10.1016/j.biortech.2008.02.045
  24. Nigam, J. (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97: 107-116. https://doi.org/10.1016/S0168-1656(02)00013-5
  25. Mishima, D., M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol. 99: 2495-2500. https://doi.org/10.1016/j.biortech.2007.04.056
  26. Aswathy, U., R. K. Sukumaran, G. L. Devi, K. P. Rajasree, R. R. Singhania, and A. Pandey (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresource Technol. 101: 925-930. https://doi.org/10.1016/j.biortech.2009.08.019
  27. Annous, B., and H. Blaschek (1990) Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microb. 56: 2559-2561.
  28. Lee, K. Y., I. B. Hwang, and T. R. Heo (1997) Enhancement of cultivation efficiency of Bifidobacterium longum using calcium carbonate buffer system. Korean J. Food. Sci. Technol. 29: 126-132.
  29. Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pHstat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98: 263-268. https://doi.org/10.1016/S1389-1723(04)00279-8

피인용 문헌

  1. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process 2017, https://doi.org/10.1016/j.biortech.2017.05.131
  2. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli 2017, https://doi.org/10.1002/biot.201700116
  3. -lysine with ethanol and hydrogen peroxide addition pp.02682575, 2018, https://doi.org/10.1002/jctb.5708
  4. Design and development of a bio-digester for production of biogas from dual waste vol.17, pp.2, 2020, https://doi.org/10.1108/wje-07-2018-0249