Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.1.067

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors  

Bhattacharjee, Meenakshi (Department of Biosciences, Rice University)
Siemann, Evan (Department of Biosciences, Rice University)
Publication Information
ALGAE / v.30, no.1, 2015 , pp. 67-79 More about this Journal
Abstract
Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.
Keywords
biofuel; fatty acid methyl ester; monoculture; open reactor; wastewater;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634-639.   DOI
2 Chaiklahan, R., Chirasuwan, N., Siangdung, W., Paithoonrangsarid, K. & Bunnag, B. 2013. Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J. Microbiol. Biotechnol. 20:609-614.
3 Chisti, Y. & Yan, J. 2011. Energy from algae: current status and future trends algal biofuels: a status report. Appl. Energy 88:3277-3279.   DOI   ScienceOn
4 Clarens, A. F., Resurreccion, E. P., White, M. A. & Colosi, L. M. 2010. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44:1813-1819.   DOI
5 Cottenie, K., Nuytten, N., Michels, E. & De Meester, L. 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442:339-350.   DOI
6 Craggs, R. J., Heubeck, S., Lundquist, T. J. & Benemann, J. R. 2011. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 63:660-665.   DOI   ScienceOn
7 Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q. & Ergas, S. 2013. Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat. Biosyst. 9:2.   DOI
8 Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B. & Smith, J. E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10:1135-1142.   DOI
9 Fortier, M. -O. P. & Sturm, B. S. M. 2012. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants. Environ. Sci. Technol. 46:11426-11434.   DOI
10 Garcia, J., Green, B. F., Lundquist, T., Mujeriego, R., Hernandez-Marine, M. & Oswald, W. J. 2006. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour. Technol. 97:1709-1715.   DOI   ScienceOn
11 Gophen, M., Yehuda, Y., Malinkov, A. & Degani, G. 1998. Food composition of the fish community in Lake Agmon. Hydrobiologia 380:49-57.   DOI
12 Gordillo, F. J. L., Goutx, M., Figueroa, F. L. & Niell, F. X. 1998. Effects of light intensity, $CO_2$ and nitrogen supply on lipid class composition of Dunaliella viridis. J. Appl. Phycol. 10:135-144.   DOI
13 Huntley, M. E. & Redalje, D. G. 2007. $CO_2$ mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig. Adapt. Strateg. Glob. Change 12:573-608.   DOI
14 Ismail, H., Abd El-All, A. A. M. & Hassanein, H. A. M. 2013. Biological influence of some microorganisms on olive mill wastewater. Egypt. J. Agric. Res. 91:1-9.
15 Jeppesen, E., Jensen, J. P., Jensen, C., Faafeng, B., Hessen, D. O., Sondergaard, M., Lauridsen, T., Brettum, P. & Christoffersen, K. 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6:313-325.   DOI
16 Lam, M. K. & Lee, K. T. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol. Adv. 30:673-690.   DOI   ScienceOn
17 Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D. & Wardle, D. A. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804-808.   DOI   ScienceOn
18 Lardon, L., Helias, A., Sialve, B., Steyer, J. -P. & Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43:6475-6481.   DOI
19 Lasswell, J. L. & Mitchell, F. L. 1997. Survey of dragonflies (Odonata: Anisoptera) in ponds of Central Texas. J. Kans. Entomol. Soc. 70:52-63.
20 Laws, E. A., Taguchi, S., Hirata, J. & Pang, L. 1988. Optimization of microalgal production in a shallow outdoor flume. Biotechnol. Bioeng. 32:140-147.   DOI
21 MacKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315-322.
22 Mansfield, S. & McArdle, B. H. 1998. Dietary composition of Gambusia affinis (Family Poeciliidae) populations in the northern Waikato region of New Zealand. N. Z. J. Mar. Freshw. Res. 32:375-383.   DOI
23 Maxwell, D. P., Falk, S., Trick, C. G. & Huner, N. P. A. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105:535-543.   DOI
24 McCann, K. S. 2000. The diversity-stability debate. Nature 405:228-233.   DOI   ScienceOn
25 McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. 2005. The dynamics of spatially coupled food webs. Ecol. Lett. 8:513-523.   DOI
26 Bacellar Mendes, L. B. & Vermelho, A. B. 2013. Allelopathy as a potential strategy to improve microalgae cultivation. Biotechnol. Biofuels 6:152.   DOI
27 Ahrens, T. & Sander, H. 2010. Microalgae in waste water treatment: green gold from sludge? Bioforum Eur. 14:16-18.
28 Alonso, D. L., Belarbi, E.-H., Fernandez-Sevilla, J. M., Rodriguez-Ruiz, J. & Grima, E. M. 2000. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461-471.   DOI
29 Amala, K. & Ramanathan, N. 2013. Comparative studies on production of Spirulina platensis on the standard and newly formulated alternative medium. Sci. Park 1:1-10.
30 Banerjee, M. & John, J. 2005. Phosphatase activity of non-hair forming cyanobacterium Rivularia and its role in phosphorus dynamics in deepwater rice-fields. Appl. Ecol. Environ. Res. 3:55-60.   DOI
31 Banerjee, M. & Kushwaha, D. S. 2005. In situ studies on algae from Shahpura Lake: nitrate metabolism and its contribution to nitrogen economy. Ecol. Environ. Conserv. 11:363-366.
32 Park, J. B. K., Craggs, R. J. & Shilton, A. N. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102:35-42.   DOI
33 Mezzomo, N., Saggiorato, A. G., Siebert, R., Tatsch, P. O., Lago, M. C., Hemkemeier, M., Costa, J. A. V., Bertolin, T. E. & Colla, L. M. 2010. Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater. Cienc. Tecnol. Aliment 30:173-178.   DOI
34 Odlare, M., Nehrenheim, E., Ribe, V., Thorin, E., Gavare, M. & Grube, M. 2011. Cultivation of algae with indigenous species: potentials for regional biofuel production. Appl. Energy 88:3280-3285.   DOI
35 Olaizola, M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20:459-466.   DOI
36 Pittman, J. K., Dean, A. P. & Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102:17-25.   DOI
37 Pulz, O. & Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635-648.   DOI
38 Ramachandra, T. V., Madhab, M. D., Shilpi, S. & Joshi, N. V. 2013. Algal biofuel from urban wastewater in India: scope and challenges. Renew. Sustain. Energy Rev. 21:767-777.   DOI
39 Rawat, I., Kumar, R. R., Mutanda, T. & Bux, F. 2011. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88:3411-3424.   DOI
40 Rizzi, F., van Eck, N. J. & Frey, M. 2014. The production of scientific knowledge on renewable energies: worldwide trends, dynamics and challenges and implications for management. Renew. Energy 62:657-671.   DOI
41 Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
42 Banerjee, M., Mishra, S. & Chatterjee, J. 2004. Scavenging of nickel and chromium toxicity in Aulosira fertilissima by immobilization: effect on nitrogen assimilating enzymes. Electron. J. Biotechnol. 7:302-309.
43 Banerjee, M. & Yadav, S. G. 2009. Cyanobacterial mitigation and lead toxicity. J. Plant Sci. Res. 25:231-235.
44 Batan, L., Quinn, J., Willson, B. & Bradley, T. 2010. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ. Sci. Technol. 44:7975-7980.   DOI
45 Borowitzka, M. A. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15.   DOI
46 Brennan, L. & Owende, P. 2010. Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14:557-577.   DOI
47 Bruton, T., Lyons, H., Lerat, Y., Stanley, M. & Rasmussen, M. B. 2009. A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin, 88 pp.
48 Burks, R. L., Jeppesen, E. & Lodge, D. M. 2001. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J. N. Am. Benthol. Soc. 20:615-628.   DOI
49 Carpenter, S. R., Christensen, D. L., Cole, J. J., Cottingham, K. L., He, X., Hodgson, J. R., Kitchell, J. F., Knight, S. E., Pace, M. L., Post, D. M. & Voichick, N. 1995. Biological control of eutrophication in lakes. Environ. Sci. Technol. 29:784-786.   DOI
50 Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. & Tredici, M. R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102:100-112.   DOI
51 Rooney, N. & McCann, K. S. 2012. Integrating food web diversity, structure and stability. Trends Ecol. Evol. 27:40-46.   DOI
52 Shurin, J. B., Abbott, R. L., Deal, M. S., Kwan, G. T., Litchman, E., McBride, R. C., Mandal, S. & Smith, V. H. 2013. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol. Lett. 16:1393-1404.   DOI
53 Smith, V. H., Sturm, B. S. M., deNoyelles, F. J. & Billings, S. A. 2010. The ecology of algal biodiesel production. Trends Ecol. Evol. 25:301-309.   DOI   ScienceOn
54 Stephenson, A. L., Kazamia, E., Dennis, J. S., Howe, C. J., Scott, S. A. & Smith, A. G. 2010. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062-4077.   DOI
55 Stockenreiter, M., Graber, A. -K., Haupt, F. & Stibor, H. 2012. The effect of species diversity on lipid production by micro-algal communities. J. Appl. Phycol. 24:45-54.   DOI
56 Sturm, B. S. M. & Lamer, S. L. 2011. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl. Energy 88:3499-3506.   DOI
57 Sturm, B. S. M., Peltier, E., Smith, V. & deNoyelles, F. 2012. Controls of microalgal biomass and lipid production in municipal wastewater-fed bioreactors. Environ. Prog. Sustain. Energy 31:10-16.   DOI
58 Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M. & Morgan, R. P. 2nd. 2005. The urban stream syndrome: current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24:706-723.   DOI
59 Sydney, E. B., da Silva, T. E., Tokarski, A., Novak, A. C., de Carvalho, J. C., Woiciecohwski, A. L., Larroche, C. & Soccol, C. R. 2011. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy 88:3291-3294.   DOI
60 Tedesco, M. A. & Duerr, E. O. 1989. Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J. Appl. Phycol. 1:201-209.   DOI
61 Yang, J., Li, X., Hu, H., Zhang, X., Yu, Y. & Chen, Y. 2011. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy 88:3295-3299.   DOI