• 제목/요약/키워드: Biodegradation

검색결과 1,035건 처리시간 0.027초

회전원판 반응조에 고정화시킨 Aspergillus sojae B-10에 의한 반응성 염료의 탈색 (Biodergradation of Reactive Dyes Using Multistage Rotating Disc Contactor Immobilized by Aspergillus sojae B-10)

  • 류병호;김동석;진승록;정종순;원용돈
    • 한국환경보건학회지
    • /
    • 제21권4호
    • /
    • pp.49-55
    • /
    • 1995
  • Dyes are released into the environment as industrial wasterwater. Dyes are considered to be a pollution problem because of the wide spread into environment with a variety of colors. Continuous biodegradation of reactive dyes such as Rifacion Red H-3EB, Rifazol Blue BT, Rifacion Yellow P4G and Rifacion Brown RT were demonstrated using multistage rotating disc contactor immobilized by Aspergillus sojae B-10. Aspergillus sojae B-10 was cultivated the optimal medium containing 2.0% glucose, 0.08% $NaNO_3$, 0.1% $KH_2PO_4$ and 0.5% $MgSO_4\cdot 7H_2O$, pH 5 at 32$\circ$C. Mycelium of Aspergillus sojae B-10 were guck to the rotating disc for 10 days until steady state. For continuous biodegradation of reactive dyes by using rotating disc contactor, it was most effective biodegradation in the medium containing 1,000 ppm each dyes at the medium feeding rate of 20 ml per hour. Under the conditions biodegradation of each dyes on 2, 4 and 6 days were 20~50%, 75% and 96%, respectively. Therefore, practical application of reactive dyes were carried out at the feeding rate of 20 ml/h as synthetic wasterwater containing 500 ppm of mixture reactive dyes. It was found the highest levels of 94% biodegradation during 20 days.

  • PDF

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation

  • Sah, Aditi;Kapri, Anil;Zaidi, M.G.H.;Negi, Harshita;Goel, Reeta
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.908-916
    • /
    • 2010
  • Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.

계면활성제 혼합 천연지방산유지 고형 비누의 세척성 및 생분해성 연구 - 생분해성을 중심으로 - (A Study on the Washing Effect Biodegradation of Natural Fat Soap - On Based Biodegradation -)

  • 이봉연;류덕환;이태관
    • 한국의류산업학회지
    • /
    • 제5권3호
    • /
    • pp.289-294
    • /
    • 2003
  • The purpose of the study was to get the valuable data for developing the new natural fat soaps which have an excellent biodegradation performance. Thus, natural fat soaps mixed with the two types of detergents (AOS and LAS) on the various concentrations were made and the biodegradation of the samples were analysed by Dissolved Oxygen method using active sludge. Also, the results were compared with the commercial synthetic detergents and market soaps. The results from the study were the followings: 1. The plant fat soap and the wasted oil soap with the concentration of 5 mg/l and 15 mg/l had an excellent biodegradation rather than animal fat soap. 2. There was little difference among samples with the concentration of 5 mg/l, but there was much difference among them with the concentration of 15 mg/l. 3. The periods for consuming oxygen of wasted oil soap mixed AOS and LAS was the fastest.

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • 제9권2호
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

Yeast에 의한 휘발성 유기화합물 분해에 있어서의 기질상호관계 해석 (Substrate Interactions in the Biodegradation of Volatile Organic Compounds by a Yeast Strain)

  • 장현섭;정미영;신승규;송지현;황선진
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.187-193
    • /
    • 2008
  • Biological removal capacities for volatile organic compounds (VOCs) were determined using a yeast strain, Candida tropicalis. In this study, VOCs including toluene, benzene, p-xylene, and styrene as single substrates or mixtures were tested in the batch culture of the yeast strain. In addition, a kinetic model was applied to evaluate substrate interactions between the VOCs. The yeast strain was able to biodegrade each VOC effectively as a growth substrate, implying it could applied to wide range of VOCs. When the yeast strain was subjected to VOCs in mixtures, the biodegradation rate of one substrate were either increased (stimulated) or decreased (inhibited) by the presence of the others. Both benzene and toluene were inhibited by the other VOCs, and substrate interaction parameters estimated in the model indicated that styrene was the strongest inhibitor for the benzene and toluene biodegradation. Meanwhile, the biodegradation of p-xylene and styrene was stimulated by the presence of either benzene or toluene. The biodegradation rate of p-xylene was significantly increased especially by the presence of toluene, and the styrene biodegradation was enhanced greatly by the benzene addition. The results of the substrate interaction by the yeast strain suggest that the biodegradation rates for the VOCs in mixtures should be carefully evaluated. Furthermore, the competitive inhibition coefficient could be applied as a useful index to determine the substrate interaction

수질분해균(水質分解菌)에 의한 Pentachlorophenol의 미생물분해(微生物分解) (Biodegradation of Pentachlorophenol by Various White Rot Fungi)

  • 최인규;안세희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권3호
    • /
    • pp.53-62
    • /
    • 1998
  • In this research, 7 species of white rot fungi were used for determining the resistance against pentachlorophenol (PCP). Three fungi with good PCP resistance were selected for evaluating the biodegradability, and biodegradation mechanism by HPLC and GC/MS spectrometry. Among 7 fungi, there were significant differences on PCP resistance on 4 different PCP concentrations. In the concentrations of 50 and 100ppm ($\mu$g of PCP per g of 2% malt extract agar), most fungi were easily able to grow, and well suited to newly PCP-added condition, but in that of more than 250ppm, the mycelia growths of Ganoderma lucidum 20435, G. lucidum 20432, Pleurotus ostreatus, and Daldinia concentrica were significantly inhibited or even stopped by the addition of PCP to the culture. However, Trametes versicolor, Phanerochaete chrysosporium, and Inonotus cuticularis still kept growing at 250ppm, indicating the potential utilization of wood rot fungi to high concentrated PCP biodegradation. Particularly, P. chrysosporium even showed very rapid growth rate at more than 500ppm of PCP concentration. Three selected fungi based on the above results showed an excellent biodegradability against PCP. P. chrysosporium degraded PCP up to 84% on the first day of incubation, and during 7 days, most of added PCP were degraded. T. versicolor also showed more than 90% of biodegradability at 7th day, and even though the initial stage of degradation was very slow, I. cuticularis has been approached to 90% at 21 st day after incubation with dense growing pattern of mycelia. Therefore, the PCP biodegradability was definitely dependent on the rapid suitability of fungi to newly PCP-added condition. In addition, the PCP biodegradation by filtrates of P. chrysosporium, T. versicolor, and I. cuticularis was very minimal or limited, suggesting that the extracellular enzyme system may be not so significantly related to the PCP biodegradation. Among the biodegradation metabolites of PCP, the most abundant one was pentachloroanisole which resulted in a little weaker toxicity than PCP, and others were tetrachlorophenol, tetrachloro-hydroquinone, benzoic acid, and salicylic acid, suggesting that PCP may be biodegraded by several sequential reactions such as methylation, radical-induced oxidation, dechlorination, and hydroxylation.

  • PDF

BAC 공정에서의 합성 향물질류 생물분해 특성 : 생물분해 동력학 (Biodegradation of Synthetic Fragrances in Biological Activated Carbon (BAC) Process : Biodegradation Kinetic)

  • 서창동;손희종;류동춘;강소원;장성호
    • 대한환경공학회지
    • /
    • 제36권12호
    • /
    • pp.858-864
    • /
    • 2014
  • 생물활성탄(BAC)과 안트라사이트 biofilter에서의 공탑 체류시간(EBCT) 및 수온의 변화에 따른 8종의 합성 향물질류의 생물분해 특성을 평가하였다. 수온 $7^{\circ}C$$18^{\circ}C$에서 EBCT를 5분~15분까지 변화시켜 실험하였다. 생물활성탄 공정에서 합성 향물질류 8종의 생물분해율은 EBCT와 수온에 따라 큰 영향을 받았으며 EBCT와 수온이 증가할수록 생물분해율이 증가하였으며, 합성 향물질류의 종류에 따른 생물활성탄 공정에서의 생물분해율은 대환 사향류인 pentalide와 ambrettolide가 가장 높았으며, 다환 사향류인 DPMI와 ADBI가 가장 낮았다. 합성 향물질류 8종에 대한 BAC 공정에서의 생물분해 속도상수($k_{bio}$)는 수온이 $7^{\circ}C$에서 $18^{\circ}C$로 상승하였을 경우, $0.1184{\sim}0.6545min^{-1}$에서 $0.3087{\sim}0.9173min^{-1}$로 증가하여 1.4~2.6배 정도 증가하였다.

BAC 공정에서의 자외선 차단제 생물분해 특성 : 생물분해 동력학 (Biodegradation of UV Filters in Biological Activated Carbon (BAC) Process : Biodegradation Kinetic)

  • 서창동;손희종;정종문;최진택;류동춘;장성호
    • 대한환경공학회지
    • /
    • 제36권11호
    • /
    • pp.739-746
    • /
    • 2014
  • 생물활성탄(BAC)과 안트라사이트 biofilter에서의 공탑 체류시간(EBCT) 및 수온의 변화에 따른 8종의 자외선 차단제들의 생물분해 특성을 평가하였다. 수온 $7^{\circ}C$$18^{\circ}C$에서 EBCT를 5분~15분까지 변화시켜 실험하였다. 생물활성탄 공정에서 자외선 차단제 8종의 생물분해율은 EBCT와 수온에 따라 큰 영향을 받았으며 EBCT와 수온이 증가할수록 생물분해율이 증가하였으며, 자외선 차단제들의 종류에 따른 생물활성탄 공정에서의 생물분해율은 EHMC와 BZC가 가장 높았으며, BP와 4-MBC가 가장 낮았다. 자외선 차단제 8종에 대한 BAC 공정에서의 생물분해 속도상수($k_{bio}$)는 수온이 $7^{\circ}C$에서 $18^{\circ}C$로 상승하였을 경우, $0.2730{\sim}0.6365min^{-1}$에서 $0.4824{\sim}0.8743min^{-1}$로 증가하여 1.5~2.1배 정도 증가하였다.

Biodegradation of Endocrine-disrupting Bisphenol A by White Rot Fungus Irpex lacteus

  • Shin, Eun-Hye;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1147-1151
    • /
    • 2007
  • Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T. versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture of I. lacteus.

Effect of cyclodextrin glucanotransferase enzyme in biodegradation of diesel oil

  • Sivaraman, C.;Ganguly, Anasuya;Mutnuri, Srikanth
    • Advances in environmental research
    • /
    • 제1권2호
    • /
    • pp.97-108
    • /
    • 2012
  • Microbial degradation of hydrocarbons is found to be an attractive process for remediation of contaminated habitats. However the poor bioavailability of hydrocarbons results in low biodegradation rates. Cyclodextrins are known to increase the bioavailability of variety of hydrophobic compounds. In the present work we purified the Cyclodextrin Glucanotransferase (CGTase) enzyme which is responsible for converting starch into cyclodextrins and studied its role on biodegradation of diesel oil contaminated soil. Purification of CGTase from Enterobacter cloacae was done which resulted in 6 fold increase in enzyme activity. The enzyme showed maximum activity at pH 7, temperature $60^{\circ}C$ with a molecular weight of 66 kDa. Addition of purified CGTase to the treatment setup with Pseudomonas mendocina showed enhanced biodegradation of diesel oil ($57{\pm}1.37%$) which was similar to the treatment setup when added with Pseudomonas mendocina and Enterobacter cloacae ($52.7{\pm}6.51%$). The residual diesel oil found in treatment setup added with Pseudomonas mendocina at end of the study was found to be $73{\pm}0.21%$. Immobilization of Pseudomonas mendocina on alginate containing starch also led to enhanced biodegradation of hydrocarbons in diesel oil at 336 hours.