Browse > Article
http://dx.doi.org/10.4014/jmb.0910.10025

Implications of Fullerene-60 upon in-vitro LDPE Biodegradation  

Sah, Aditi (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Kapri, Anil (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Zaidi, M.G.H. (Department of Chemistry, G. B. Pant University of Agriculture and Technology)
Negi, Harshita (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Goel, Reeta (Department of Microbiology, G. B. Pant University of Agriculture and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.5, 2010 , pp. 908-916 More about this Journal
Abstract
Fullerene-60 nanoparticles were used for studying their effect on the low-density polyethylene (LDPE) biodegradation efficiency of two potential polymer-degrading consortia comprising three bacterial strains each. At a concentration of 0.01% (w/v) in minimal broth lacking dextrose, fullerene did not have any negative influence upon the consortia growth. However, fullerene was found to be detrimental for bacterial growth at higher concentrations (viz., 0.25%, 0.5%, and 1%). Although addition of 0.01% fullerene into the biodegradation assays containing 5mg/ml LDPE subsided growth curves significantly, subsequent analysis of the degraded products revealed an enhanced biodegradation. Fourier transform infrared spectroscopy (FT-IR) revealed breakage and formation of chemical bonds along with the introduction of ${\nu}C$-O frequencies into the hydrocarbon backbone of LDPE. Moreover, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) revealed a higher number of decomposition steps along with a 1,000-fold decrease in the heat of reactions (${\Delta}H$) in fullerene-assisted biodegraded LDPE, suggesting the probable formation of multiple macromolecular byproducts. This is the first report whereby fullerene-60, which is otherwise considered toxic, has helped to accelerate the polymer biodegradation process of bacterial consortia.
Keywords
Fullerene-60; LDPE; consortium; biodegradation; FT-IR; simultaneous TG-DTG-DTA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Duran, N., P. D. Marcato, G. I. H. De Souza, O. L. Alves, and E. Esposito. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotech. 3: 203-208.   DOI   ScienceOn
2 Oka, M., T. Tomioka, K. Tomita, A. Nishino, and S. Ueda. 1994. Inactivation of enveloped viruses by a silver-thiosulfate complex. Met. Based Drugs 1: 511.   DOI   ScienceOn
3 Perez, L., M. Flores, J. Avalos, L. S. Miguel, L. Fonseca, and O. Resto. 2003. Comparative study of the growth curves of B. subtilis, K. pneumoniae, C. xerosis and E. coli bacteria in medium containing nanometric silicon particles. In: Materials Research Society Symposium Proceedings, Vol. 737. Materials Research Society, PA, U.S.A.
4 Prato, M. 1999. Fullerene materials. Top. Curr. Chem. 199: 173-187.   DOI
5 Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.   과학기술학회마을
6 Soni, R., A. Kapri, M. G. H. Zaidi, and R. Goel. 2009. Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J. Polym. Environ. 17: 233-239.   DOI   ScienceOn
7 Soni, R., S. Kumari, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Practical applications of rhizospheric bacteria in biodegradation of polymers from plastic wastes, pp. 235-243. In I. Ahmad, J. Pichtel, and S. Hayat (eds.). Plant Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH, Weinheim, Germany.
8 Willert, M., R. Rothe, K. Landfaster, and M. Antonietti. 2001. Synthesis of inorganic and metallic nanoparticles by miniemulsification of molten salts and metals. Chem. Mater. 13: 4681-4685.   DOI   ScienceOn
9 Goel, R., M. G. H. Zaidi, R. Soni, K. Lata, and Y. S. Shouche. 2008. Implication of Arthrobacter and Enterobacter species for polycarbonate degradation. Int. Biodeter. Biodegrad. 61: 167-172.   DOI   ScienceOn
10 Williams, D. N., S. H. Ehrman, and T. R. P. Holoman. 2006. Evaluation of the microbial growth response to inorganic nanoparticles. J. Nanobiotechnol. 4: 3.   DOI
11 Hadad, D., S. Geresh, and A. Sivan. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100.   DOI   ScienceOn
12 Hayaishi, O. 2005. An odyssey with oxygen. Biochem. Biophys. Res. Commun. 338: 2-6. Harwood Academics, Amsterdam.   DOI   ScienceOn
13 IPCS. 1990. In general, barium has been shown to inhibit the growth of bacteria, fungi, mosses, and algae. In J. Kost and D. M. Wiseman (eds.). Handbook of Biodegradable Polymers. Harwood Academics, Amsterdam.
14 Kapri, A., M. G. H. Zaidi, and R. Goel. 2009. Nanobarium titanate as supplement to accelerate plastic waste biodegradation by indigenous bacterial consortia. AIP Conf. Proc. 1147: 469-474.
15 Lyon, D. Y., D. A. Brown, and P. J. J. Alvarez. 2008. Implications and potential applications of bactericidal fullerene water suspensions: Effect of nC60 concentration, exposure conditions and shelf life. Water Sci. Technol. 57.10: 1533-1538.   DOI   ScienceOn
16 Chiron, J. P., J. Lamandé, F. Moussa, F. Trivin, and R. Ceolin. 2000. Effect of micronized C60 fullerene on the microbial growth in vitro. Ann. Pharm. Fr. 58: 170-175.
17 Negi, H., A. Kapri, M. G. H. Zaidi, A. Satlewal, and R. Goel. 2009. Comparative in-vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int. Biodeter. Biodegrad. 63: 553-558.   DOI   ScienceOn
18 Oloffs, A., C. Crosse-Siestrup, S. Bisson, M. Rinck, R. Rudolvh, and U. Gross. 1994. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron® material. Biomaterials 15: 753-758.   DOI   ScienceOn
19 Orhan, Y. and H. Buyukgungor. 2000. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Biodeter. Biodegrad. 45: 49-55.   DOI   ScienceOn
20 Bosi, S., T. Da Ros, G. Spalluto, and M. Prato. 2003. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 38: 913-923.   DOI   ScienceOn
21 Flores, M., N. Colon, O. Rivera, N. Villalba, Y. Baez, D. Quispitupa, J. Avalos, and O. Perales. 2004. A study of the growth curves of C. xerosis and E. coli bacteria in mediums containing cobalt ferrite nanoparticles. In: Materials Research Society Symposium Proceedings, Vol. 820. Materials Research Society, PA, U.S.A.
22 Fu, G. F., P. S. Vary, and C. T. Lin. 2005. Anatase $TiO_2$ nanocomposites for antimicrobial coatings. J. Phys. Chem. 109: 8889-8898.   DOI