DOI QR코드

DOI QR Code

Biodegradation of Synthetic Fragrances in Biological Activated Carbon (BAC) Process : Biodegradation Kinetic

BAC 공정에서의 합성 향물질류 생물분해 특성 : 생물분해 동력학

  • Seo, Chang-Dong (Water Quality Institute, Water Authority) ;
  • Son, Hee-Jong (Water Quality Institute, Water Authority) ;
  • Ryu, Dong-Choon (Water Quality Institute, Water Authority) ;
  • Kang, So-Won (Department of Bio-chemical Engineering, Friedrich-Alexander University) ;
  • Jang, Seong-Ho (Department of Bioenvironmental Energy, Pusan National University)
  • 서창동 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소) ;
  • 강소원 (프리드리히-알렉산더대학교 생명화학공학과) ;
  • 장성호 (부산대학교 바이오환경에너지학과)
  • Received : 2014.11.12
  • Accepted : 2014.12.30
  • Published : 2014.12.31

Abstract

In this study, The effects of empty bed contact time (EBCT) and water temperature on the biodegradation of 8 synthetic fragrances (SFs) in biological activated carbon (BAC) process were investigated. Experiments were conducted at two water temperatures (7 and $18^{\circ}C$) and three EBCTs (5, 10 and 15 min). Increasing EBCT and water temperature increased the biodegradation efficiency of SFs in BAC column. Pentalide and ambrettolide were the highest biodegradation efficiency, but DPMI and ADBI were the lowest. The kinetic analysis suggested a pseudo-first-order reaction model for biodegradation of 8 SFs at various water temperatures and EBCTs. The pseudo-first-order biodegradation rate constants ($k_{bio}$) of 8 SFs ranging from $0.1184{\sim}0.6545min^{-1}$ at $7^{\circ}C$ to $0.3087{\sim}0.9173min^{-1}$ at $18^{\circ}C$. By increasing the water temperature from $7^{\circ}C$ to $18^{\circ}C$, the biodegradation rate constants ($k_{bio}$) were increased 1.4~2.6 times.

생물활성탄(BAC)과 안트라사이트 biofilter에서의 공탑 체류시간(EBCT) 및 수온의 변화에 따른 8종의 합성 향물질류의 생물분해 특성을 평가하였다. 수온 $7^{\circ}C$$18^{\circ}C$에서 EBCT를 5분~15분까지 변화시켜 실험하였다. 생물활성탄 공정에서 합성 향물질류 8종의 생물분해율은 EBCT와 수온에 따라 큰 영향을 받았으며 EBCT와 수온이 증가할수록 생물분해율이 증가하였으며, 합성 향물질류의 종류에 따른 생물활성탄 공정에서의 생물분해율은 대환 사향류인 pentalide와 ambrettolide가 가장 높았으며, 다환 사향류인 DPMI와 ADBI가 가장 낮았다. 합성 향물질류 8종에 대한 BAC 공정에서의 생물분해 속도상수($k_{bio}$)는 수온이 $7^{\circ}C$에서 $18^{\circ}C$로 상승하였을 경우, $0.1184{\sim}0.6545min^{-1}$에서 $0.3087{\sim}0.9173min^{-1}$로 증가하여 1.4~2.6배 정도 증가하였다.

Keywords

References

  1. Rimkus, G. G., "Polycyclic musk fragrances in the aquatic environment," Toxicol. Lett., 111(1), 37-56(1999). https://doi.org/10.1016/S0378-4274(99)00191-5
  2. Gatermann, R., Biselli, S., Huhnerfuss, H., Rimkus, G. G., Hecker, M. and Karbe, L., "Synthetic musks in the environment. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels," Arch. Environ. Contam. Toxicol., 42(4), 437-446(2002). https://doi.org/10.1007/s00244-001-0041-2
  3. Hutter, H. P., Wallner, P., Moshammer, H., Hartl, W., Sattelberger, R., Lorbeer, G. and Kundi, M., "Blood concentrations of polycyclic musks in healthy young adults," Chemosphere, 59(4), 487-492(2005). https://doi.org/10.1016/j.chemosphere.2005.01.070
  4. Schmid, P., Kohler, M., Gujer, E., Zennegg, M. and Lanfranchi, M., "Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland," Chemosphere, 67(9), S16-S21(2007). https://doi.org/10.1016/j.chemosphere.2006.05.080
  5. Raab, U., Preiss, U., Albrecht, M., Shahin, N., Parlar, H. and Fromme, H., "Concentrations of polybrominated diphenyl ethers, organochlorine compounds and nitro musks in mother's milk from Germany (Bavaria)," 72(1), 87-95(2008). https://doi.org/10.1016/j.chemosphere.2008.01.053
  6. Lee, I. S., Lee, S. H. and Oh, J. E., "Occurrence and fate of synthetic musk compounds in water environment," Water Res., 44(1), 214-222(2010). https://doi.org/10.1016/j.watres.2009.08.049
  7. Tanabe, S., "Synthetic musks-arising new environmental menace?," Mar. Pollut. Bull., 50(10), 1025-1026(2005). https://doi.org/10.1016/j.marpolbul.2005.07.005
  8. Nakata, H., "Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese costal waters," Environ. Sci. Technol., 39(10), 3430-3434(2005). https://doi.org/10.1021/es050199l
  9. Wan, Y., Wei, Q., Hu, J., Jin. X., Zhang, Z., Zhen, H. and Liu, J., "Levels, tissue distribution, and age-related accumulation of synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): comparison to organochlorines," Environ. Sci. Technol., 41(2), 424-430(2007). https://doi.org/10.1021/es061771r
  10. Schreurs, R. H., Sonneveld, E., van der Saag, P. T., Van der Burg, B. and Seinen, W., "Examination of the in vitro (anti) estrogenic, (anti)androgenic and (anti)dioxin-like activities of tetralin, indane and isochroman derivatives using receptorspecific bioassays," Toxicol. Lett., 156(2), 261-275(2005). https://doi.org/10.1016/j.toxlet.2004.11.014
  11. Schreurs, R. H., Sonneveld, E., Jansen, J. H., Seinen, W. and Van der Burg, "Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR) and progesterone (PR) in reporter gene bioassays," Toxicol. Sci., 83(2), 264-272(2005).
  12. Mori, T., Iida, M., Ishibashi, H., Kohra, S., Takao, Y., Takemasa, T. and Arizono, K., "Hormonal activity of polycyclic musks evaluated by reporter gene assay," Environ. Sci., 14 (4), 195-202(2007).
  13. Bizarro, C., Ros, O., Vallejo, A., Prieto, A., Etxebarria, N., Cajaraville, M. P. and Ortiz-Zarragoitia, M., "Intersex condition and molecular markers of endocrine disruption in relation with burdens of emerging pollutants in thicklip grey mullets (Chelon labrosus) from Basque estuaries (South-East Bay of Biscay)," Mar. Environ. Res., 96, 19-28(2014). https://doi.org/10.1016/j.marenvres.2013.10.009
  14. Seo, C. D., Son, H. J., Lee, I. S. and Oh, J. E., "Detection of synthetic musk compounds (SMCs) in Nakdong river basin," J. Kor. Soc. Environ. Eng., 32(6), 615-624(2010).
  15. Lee, I., Lee, C., Heo, S. and Lee, J., "Occurrence of synthetic musk compounds in surface and waste waters in Korea," J. Kor. Soc. Environ. Eng., 33(11), 821-826(2011). https://doi.org/10.4491/KSEE.2011.33.11.821
  16. Lee, I., Kim, U., Oh, J., Choi, M. and Hwang, D., "Comprehensive monitoring of synthetic musk compounds from freshwater to coastal environments in Korea: With consideration of ecological concerns and bioaccumulation," Sci. Total Environ., 470-471, 1502-1508(2014). https://doi.org/10.1016/j.scitotenv.2013.07.070
  17. Seo, C. D., Son, H. J., Yoom, H. S., Choi, D. H. and Ryu, D. C., "Synthetic musk compounds removal using biological activated carbon process in drinking water treatment," J. Kor. Soc. Environ. Eng., 34(3), 195-203(2012). https://doi.org/10.4491/KSEE.2012.34.3.195
  18. Balk, F. and Ford, R. A., "Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU-I. Fate and exposure assessment," Toxicol. Lett., 111(1), 57-79(1999). https://doi.org/10.1016/S0378-4274(99)00169-1
  19. Vallecillos, L., Pocurull, E. and Borrull, F., "Fully automated determination of macrocyclic musk fragrances in wastewater by microextraction by packed sorbents and large volume injection gas chromatography-mass spectrometry," J. Chromatogr. A, 1264, 87-94(2012). https://doi.org/10.1016/j.chroma.2012.09.049
  20. Scognamiglio, J., Letizia, C. S., Politano, V. T. and Api, A. M., "Fragrance material review on 1-(1,2,3,4,5,6,7,8-octahydro- 2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (OTNE)," Food Chem. Toxicol., 62, S120-S132(2013). https://doi.org/10.1016/j.fct.2013.08.056
  21. Goel, S., Hozalski, R. M. and Bouwer, E. J., "Biodegradation of NOM: effect of NOM source and ozone dose," J. Am. Water Works Assoc., 87(1), 90-105(1995).
  22. Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Kor. Soc. Environ. Eng., 31(11), 989-996(2009).
  23. Son, H. J., Roh, J. S. and Kang, L. S., "Determination of BDOCrapid and BDOCslow using batch bio-reactor," J. Kor. Soc. Water Qual., 20(4), 357-364(2004).
  24. Seo, C. D., Son, H. J., Yoom, H. S., Choi, J. T., Ryu, D. C., Kwon, K. W. and Jang, S. H., "Analysis of synthetic fragrances (SFs) in water using stir bar sorptive extraction (SBSE) and GC-MS/MS," J. Kor. Soc. Environ. Eng., 36(6), 387-395(2014). https://doi.org/10.4491/KSEE.2014.36.6.387
  25. Zhang, X., Brar, S. K., Yan, S., Tyagi, R. D. and Surampalli, "Fate and transport of fragrance materials in principal environmental sinks," Chemosphere, 93(6), 857-869(2013). https://doi.org/10.1016/j.chemosphere.2013.05.055
  26. Cavret, S. and Feidt, C., "Intestinal metabolism of PAH: in vitro demonstration and study of its impact on PAH transfer through the intestinal epithelium," Environ. Res., 98(1), 22-32(2005). https://doi.org/10.1016/j.envres.2004.10.010
  27. Ehlers, G. and Loibner, A., "Linking organic pollutant (bio) availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio) availability prediction," Environ. Pollut., 141(3), 494-512 (2006). https://doi.org/10.1016/j.envpol.2005.08.063
  28. Kupper, T., Plagellat, C., Brandli, R. C., de Alencastro, L. F., Grandjean, D. and Tarradellas, J. "Fate and removal of polycyclic musks, UV filters and biocides during wastewater treatment," Water Res., 40(14), 2603-2612(2006). https://doi.org/10.1016/j.watres.2006.04.012
  29. Ko, J. H., Son, H. J., Kim, Y. J., Bae, S. M., Yoo, P. J. and Lee, T. H., "Biodegradation characteristics of aldehydes using biological activated carbon process," J. Kor. Soc. Environ. Eng., 31(11), 989-996(2009).

Cited by

  1. Evaluation of Biodegradation Kinetic in Biological Activated Carbon (BAC) Process for Drinking Waste Treatment : Effects of EBCT and Water Temperature vol.37, pp.7, 2015, https://doi.org/10.4491/KSEE.2015.37.7.404