DOI QR코드

DOI QR Code

Effect of cyclodextrin glucanotransferase enzyme in biodegradation of diesel oil

  • Sivaraman, C. (Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani - K.K. Birla Goa Campus) ;
  • Ganguly, Anasuya (Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani - K.K. Birla Goa Campus) ;
  • Mutnuri, Srikanth (Applied and Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani - K.K. Birla Goa Campus)
  • Received : 2012.05.07
  • Accepted : 2012.07.23
  • Published : 2012.06.25

Abstract

Microbial degradation of hydrocarbons is found to be an attractive process for remediation of contaminated habitats. However the poor bioavailability of hydrocarbons results in low biodegradation rates. Cyclodextrins are known to increase the bioavailability of variety of hydrophobic compounds. In the present work we purified the Cyclodextrin Glucanotransferase (CGTase) enzyme which is responsible for converting starch into cyclodextrins and studied its role on biodegradation of diesel oil contaminated soil. Purification of CGTase from Enterobacter cloacae was done which resulted in 6 fold increase in enzyme activity. The enzyme showed maximum activity at pH 7, temperature $60^{\circ}C$ with a molecular weight of 66 kDa. Addition of purified CGTase to the treatment setup with Pseudomonas mendocina showed enhanced biodegradation of diesel oil ($57{\pm}1.37%$) which was similar to the treatment setup when added with Pseudomonas mendocina and Enterobacter cloacae ($52.7{\pm}6.51%$). The residual diesel oil found in treatment setup added with Pseudomonas mendocina at end of the study was found to be $73{\pm}0.21%$. Immobilization of Pseudomonas mendocina on alginate containing starch also led to enhanced biodegradation of hydrocarbons in diesel oil at 336 hours.

Keywords

References

  1. APHA (American Public Health Association) (1998), Standard Methods for the Examination of Water and Wastewater (19th Edition), Washington DC, USA.
  2. Arulazhagan, P., Vasudevan, N. and Yeom, I.T. (2010), "Biodedegradation of polyaromatic hydrocarbons by a halotolerant bacterial consortium from marine environment", Int. J. Environ. Sci. Tech., 7(4), 639-652. https://doi.org/10.1007/BF03326174
  3. Bardi, L., Mattei, A., Steffan, S. and Marzona, M. (2000), "Hydrocarbon degradation by a soil microbial population with beta-cyclodextrin as a surfactant to enhance bioavailability", Enz. Microb. Technol., 27(9), 709-713. https://doi.org/10.1016/S0141-0229(00)00275-1
  4. Cao, X., Jin, Z., Chen, F. and Wang, X. (2004), "Purification and properties of cyclodextrin glucanotransferase from an alkalophilic Bacillus sp. 7-12", J. Food Biochem., 28(6), 463-475. https://doi.org/10.1111/j.1745-4514.2004.04603.x
  5. Doyle, E., Muckian, L., Hickey, A.M. and Clipson, N. (2008), "Microbial PAH degradation", Adv. Appl. Microbiol., 65, 27-66. https://doi.org/10.1016/S0065-2164(08)00602-3
  6. Fava, F., Bertin, L., Fedi, S. and Zannoni, D. (2003), "Methyl-${\beta}$-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged contaminated soils", Biotechnol. Bioengg., 81(4), 381-390. https://doi.org/10.1002/bit.10579
  7. Franzetti, A., Gennaro, P.D., Bevilacqua, A., Papacchini, M. and Bestetti, G. (2006), "Environmental features of two commercial surfactants widely used in soil remediation", Chemosphere., 62(9), 474-1480.
  8. Gawande, B.N., Goel, A., Patkar, A.Y. and Nene, S.N. (1999), "Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus", Appl. Microbiol. Biotechnol., 51(4), 504-509. https://doi.org/10.1007/s002530051424
  9. Grant, R.J., Muckian, L.M., Clipson, N.J.W. and Doyle, E.M. (2007), "Microbial community changes during the bioremediation of creosote-contaminated soil", Lett. Appl. Microbiol., 44(3), 293-300. https://doi.org/10.1111/j.1472-765X.2006.02066.x
  10. Haritash, A.K.A. and Kaushik, C.P. (2009), "Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review", J. Hazard. Mater., 169(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
  11. Johnsen, A.R. and Karlson, U. (2004), "Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs)", Appl. Microbiol. Biotechnol., 63(4), 452-459. https://doi.org/10.1007/s00253-003-1265-z
  12. Juhasz, A., Stanley, G.A. and Britz, M.L. (2000), "Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: Effects on microtox and mutagenicity bioassays", Bioremed. J., 4(4), 271-283. https://doi.org/10.1080/10889860091114248
  13. Karamalidis, A.K., Evangelou, A.C., Karabika, E., Koukkou, A.I., Drainas, C. and Voudrias, E.A. (2010), "Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet", Biores. Technol., 101(16), 6545-6552. https://doi.org/10.1016/j.biortech.2010.03.055
  14. Laemmli, U.K. (1970), "Cleavage of structural proteins during the assembly of the head of bacteriophage T4", Nature, 227, 680-685. https://doi.org/10.1038/227680a0
  15. Lee, J.H., Choi, K.H., Choi, J.Y., Lee, Y.S., Kwon, I.B. and Yu, J.H. (1992), "Enzymatic production of a-cyclodextrin with the cyclomaltodextrin glucanotransferase of Klebsiella oxytoca 19-1", Enz. Microb. Technol., 14(12), 1017-1020. https://doi.org/10.1016/0141-0229(92)90088-6
  16. Lee, K.W., Shin, H.D. and Lee, Y.H. (2006), "Catalytic function and affinity purification of site-directed mutant ${\alpha}$-cyclodextrin glucanotransferase from alkalophilic Bacillus firmus var. alkalophilus", J. Mol. Catal. B: Enzymatic., 26(3), 157-165.
  17. Lee, Y.H. and Park, D.C. (1991), "Enzymatic synthesis of cyclodextrin in a heterogeneous enzyme reaction system containing insoluble extruded starch", Kor. J. Appl. Microbiol. Biotechnol., 19(5), 514-520.
  18. Nessel, C.S., (1999). "A comprehensive evaluation of the carcinogenic potential of middle distillate fuels", Drug Chem. Toxicol., 22(1), 165-180. https://doi.org/10.3109/01480549909029730
  19. Mukherji, S. and Vijay, A. (2002), "Critical issues in bioremediation of oil and tar contaminated sites", Proceedings of the International Conference on Advances in Civil Engineering, IIT Kharagpur, India, January.
  20. Nakamura, N. and Horikoshi, K. (1976), "Purification and properties of cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp.", Agri. Biol. Chem., 40(5), 935-41. https://doi.org/10.1271/bbb1961.40.935
  21. Penninga, D., Strokopytov, B., Rozeboom, H.J., Lawson, C.L., Dijkstra, B.W., Bergsma, J. and Dijkhuizen, L. (1995), "Site-directed mutations in Tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity", Biochem., 34(10), 3368-3376. https://doi.org/10.1021/bi00010a028
  22. Rahman, K., Illias, R.M., Hassan, O., Mahmood, N.A.N. and Nashid, N.A.A. (2006), "Molecular cloning of a cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. TS1-1 and characterization of the recombinant enzyme", Enz. Microb. Technol., 39(1), 74-84. https://doi.org/10.1016/j.enzmictec.2005.09.014
  23. Reid, B.J., Stokes, J.D., Jones, K.C. and Semple, K.T. (2004), "Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil", Environ. Toxicol. Chem., 23(3), 550-556. https://doi.org/10.1897/02-567
  24. Rocha, F.J.M., Rodriguez, V.A.H. and Lamela, M.A.T. (2001), "Biodegradation of diesel oil in soil by a microbial consortium", Water Air Soil Poll., 128(3-4), 313-320. https://doi.org/10.1023/A:1010392821353
  25. Ron, E. and Rosenberg, E. (2001), "Natural roles of biosurfactants", Environ. Microbiol., 3(4), 229-236. https://doi.org/10.1046/j.1462-2920.2001.00190.x
  26. Sabate, J., Vinas, M. and Solanas, A.M. (2006), "Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil", Chemosphere, 63(10), 1648-1659. https://doi.org/10.1016/j.chemosphere.2005.10.020
  27. Sakata, M. (1987), "Movement and neutralisation of alkaline leachate at coal ash disposal sites", Environ. Sci. Tech., 21(8), 771-777. https://doi.org/10.1021/es00162a007
  28. Sian, H.K., Said, M., Hassan, O., Kamaruddin, K., Ismail, A.F., Rahman, A.R., Mahmood, N.A.N. and Illias, R.M. (2005), "Purification and characterization of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. G1", Proc. Biochem., 40(3-4), 1101-1111. https://doi.org/10.1016/j.procbio.2004.03.018
  29. Sivaraman, C., Ganguly, A. and Mutnuri, S. (2010), "Biodegradation of hydrocarbons in the presence of cyclodextrins", W. J. Microb. Biot., 26(2), 227-232. https://doi.org/10.1007/s11274-009-0164-6
  30. Sivaraman, C., Ganguly, A., Nikolausz, M. and Mutnuri, S. (2011), "Isolation of hydrocarbonoclastic bacteria from bilge oil contaminated waters", Int. J. Environ. Sci. Technol., 8(3), 461-470. https://doi.org/10.1007/BF03326232
  31. Sivaraman, C., Ganguly, A. and Mutnuri, S. (2012), "Cloning and expression of catechol 2,3 dioxygenase and cyclodextrin glucanotransferase gene in E. coli and its role in biodegradation", Int. J. Life Cycle Ass., 2(3), 10-19.
  32. Sticher, P., Jaspers, M.C.M., Stemmler, K., Harms, H., Zehnder, A.J.B. and van der Meer, J.R. (1997), "Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples", Appl. Environ. Microbiol., 63(10), 4053-4060.
  33. Tyagi, M., Fonseca, M.M.R. and Carvalho, C.C.C.R. (2011), "Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes", Biodegradation, 22(2), 231-241. https://doi.org/10.1007/s10532-010-9394-4
  34. Valle, M.D. (2004), "Cyclodextrin and their uses: a review", Proc. Biochem., 39(9), 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
  35. Veen, J.A.V., Overbeek, L.S.V. and Elsas, J.D.V. (1997), "Fate and activity of microorganisms introduced into soil", Microbiol. Mol. Biol. Rev., 61(2), 121-135.
  36. Volkering, F., Breure, A.M. and Rulkens, W.H. (1998), "Microbiological aspects of surfactant use for biological soil remediation", Biodegradation, 8(6), 401-417.
  37. Willumsen, P.A. and Arvin, E. (1999), "Kinetics of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis", Environ. Sci. Technol., 33(15), 2571-2578. https://doi.org/10.1021/es981022c
  38. Willumsen, P.A., Nielsen, J.K. and Karlson, U. (2001), "Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions", Appl. Microbiol. Biotechnol., 56(3-4), 539-544. https://doi.org/10.1007/s002530100640
  39. Zanaroli, G., Di Toro, S., Todaro, D., Varese, G.C., Bertolotto, A. and Fava, F. (2010), "Characterization of two diesel fuel degrading microbial consortia enriched from a non-acclimated, complex source of microorganisms", Microb. Cell Fact., 9(10).