Browse > Article

Biodegradation of Endocrine-disrupting Bisphenol A by White Rot Fungus Irpex lacteus  

Shin, Eun-Hye (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University)
Choi, Hyoung-Tae (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University)
Song, Hong-Gyu (Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.7, 2007 , pp. 1147-1151 More about this Journal
Abstract
Biodegradation of endocrine-disrupting bisphenol A was investigated with several white rot fungi (Irpex lacteus, Trametes versicolor, Ganoderma lucidum, Polyporellus brumalis, Pleurotus eryngii, Schizophyllum commune) isolated in Korea and two transformants of T. versicolor (strains MrP 1 and MrP 13). I. lacteus degraded 99.4% of 50 mg/l bisphenol A in 3 h incubation and 100% in 12 h incubation. which was the highest degradation rate among the fungal strains tested. T. versicolor degraded 98.2% of 50 mg/l bisphenol A in 12 h incubation. Unexpectedly, the transformant of the Mn-repressed peroxidase gene of T. versicolor, strain MrP 1, degraded 76.5% of 50 mg/l bisphenol A in 12 h incubation, which was a lower degradation rate than wild-type T. versicolor. The removal of bisphenol A by I. lacteus occurred mainly by biodegradation rather than adsorption. Optimum carbon sources for biodegradation of bisphenol A by I. lacteus were glucose and starch, and optimum nitrogen sources were yeast extract and tryptone in a minimal salts medium; however, bisphenol A degradation was higher in nutrient-rich YMG medium than that in a minimal salts medium. The initial degradation of endocrine disruptors was accompanied by the activities of manganese peroxidase and laccase in the culture of I. lacteus.
Keywords
Biodegradation; bisphenol A; endocrine disruptor; white rot fungi;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Chakraborty, J. and T. Dutta. 2006. Isolation of a Pseudomonas sp. capable of utilizing 4-nonylphenol in the presence of phenol. J. Microbiol. Biotechnol. 16: 1740-1746   과학기술학회마을
2 Hirano, T. H., Y. Honda, T. Watanabe, and M. Kuwahara. 2000. Degradation of bisphenol A by the lignin-degrading enzyme, manganese peroxidase, produced by the white-rot basidiomycete, Pleurotus ostreatus. Biosci. Biatechnol. Biachem. 64: 1958-1962   DOI   ScienceOn
3 Kang, J. H. and F. Kondo. 2002. Bisphenol A degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 43: 265-269   DOI   ScienceOn
4 Kim, H. and H. Song. 2003. Transformation and mineralization of 2,4,6-trinitrotoluene by the white rot fungus Irpex lacteus. Appl. Microbiol. Biotechnol. 61: 150-156   DOI
5 Kim, J., H. W. Ryu, D. J. Jung, T. H. Lee, and K.-S. Cho. 2005. Styrene degradation in a polyurethane inoculated with Pseudomonas sp. IS-3. J. Microbiol. Biotechnol. 15: 1207-1213   과학기술학회마을
6 Lee, Y., C. Park, B. Lee, E. Han, T. Kim, J. Lee, and S. Kim. 2006. Effect of nutrients on the production of extracellular enzymes for decolorization of reactive blue 19 and reactive black 5. J. Microbiol. Biotechnol. 16: 226-231   과학기술학회마을
7 Maffini, M., B. Rubin, C. Sonnenschein, and A. Soto. 2006. Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol. Cell. Endocrinol. 254-255: 179-186
8 Reddy, C. A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320-328   DOI   ScienceOn
9 Susiarjo, M., T. Hassold, E. Freeman, and P. Hunt. 2006. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 3: 1-8
10 Zhang, F., J. Knapp, and K. Tapley. 1999. Decolourisation of cotton bleaching effluent with wood rotting fungus. Wat. Res. 33: 918-928
11 Gohel, V., D. Jiwan, P. Vyas, and H. Chhatpar. 2005. Statistical optimization of chitinase production by Pantoea dispersa to enhance degradation of Crustacean chitin waste. J. Microbiol. Biotechnol. 15: 197-201   과학기술학회마을
12 Kim, H. and H. Song. 2000. Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. Biotechnol. Lett. 22: 969-975   DOI   ScienceOn
13 Tien, K. and T. Kirk. 1998. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161: 813-817
14 Chai, W., Y. Handa, M. Suzuki, M. Saito, N. Kato, and C. Horiuchi. 2005. Biodegradation of bisphenol A by fungi. Appl. Biochem. Biotechnol. 120: 175-182   DOI   ScienceOn
15 Kim, Y.-J. and J. Nicell. 2006. Laccase-catalyzed oxidation of bisphenol A with the aid of additives. Process Biochem. 41: 1029-1037   DOI
16 Song, H. 1997. Biodegradation of aromatic hydrocarbons by several white-rot fungi. J. Microbiol. 35: 66-71
17 Staples, C., P. Dom, G. Klecka, S. O'Block, and L. Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36: 2149-2173   DOI   ScienceOn
18 Kang, J. H., Y. Katayama, and F. Kondo. 2006. Biodegradation or metabolism of bisphenol A: From microorganism to mammals. Toxicology 217: 81-90   DOI
19 Kim, Y. 2005. Cloning and expression analysis of manganesedependent peroxidase and Mn-repressed peroxidase, overexpression of its gene by genetic transformation. Dissertation for the degree of M.Sc., Dept. Microbiol., Graduate School, Kangwon National University
20 Colborn, T., D. Dumanoski, and J. Myers. 1996. Our Stolen Future. Dutton, New York, U.S.A
21 Han, M., H. Choi, and H. Song. 2005. Purification and characterization of laccase from the white rot fungus Trametes versicolor. J. Microbiol. 43: 555-560   과학기술학회마을
22 Ross, I. K. 1982. The role of laccase in carpophore initiation in Coprinus congregatus. J. Gen. Microbol. 128: 2763-2770
23 Saito, T, K. Kato, Y. Yokogawa, M. Nishida, and N. Yamashita. 2004. Detoxification of bisphenol A and nonylphenol by purified extracellular laccase from a fungus isolated from soil. J. Biosci. Bioeng. 98: 64-66   DOI
24 Kang, J. H., N. Ri, and F. Kondo. 2004. Streptomyces sp. strain isolated from river water has high bisphenol A degradability. Lett. Appl. Microbiol. 39: 178-180   DOI   ScienceOn
25 Modaressi, K., K. Taylor, J. Bewtra, and N. Biswas. 2005. Laccase-catalyzed removal of bisphenol-A from water: Protective effect of PEG on enzyme activity. Wat. Res. 39: 4309-4316   DOI   ScienceOn