• Title/Summary/Keyword: Biocompatible materials

Search Result 199, Processing Time 0.033 seconds

3D Printing of Biocompatible PM-materials

  • Dourandish, Mahdi;Godlinski, Dirk;Simchi, Abdolreza
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.252-253
    • /
    • 2006
  • The fabrication of complex-shaped parts out of Co-Cr-Mo alloy and 316L stainless steel by three-dimensional printing (3DP) was studied using two grades of each alloy with average particle size of 20 and $75\;{\mu}m$, respectively. To produce sound specimens, the proper 3DP processing parameters were determined. The sintering behavior of the powders was characterized by dilatometric analysis and by batch sintering in argon atmosphere at $1280^{\circ}$ for 2h. The 3DP process has successfully produced complex-shaped biomedical parts with total porosity of 12-25% and homogenous pore structure, which could be suitable for tissue growth into the pores.

  • PDF

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Skin-interfaced Wearable Biosensors: A Mini-Review

  • Kim, Taehwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2022
  • Wearable devices have the potential to revolutionize future medical diagnostics and personal healthcare. The integration of biosensors into scalable form factors allow continuous and noninvasive monitoring of key biomarkers and various physiological indicators. However, conventional wearable devices have critical limitations owing to their rigid and obtrusive interfaces. Recent developments in functional biocompatible materials, micro/nanofabrication methods, multimodal sensor mechanisms, and device integration technologies have provided the foundation for novel skin-interfaced bioelectronics for advanced and user-friendly wearable devices. Nonetheless, it is a great challenge to satisfy a wide range of design parameters in fabricating an authentic skin-interfaced device while maintaining its edge over conventional devices. This review highlights recent advances in skin-compatible materials, biosensor performance, and energy-harvesting methods that shed light on the future of wearable devices for digital health and personalized medicine.

Challenge of 2-dimensional Inorganic Nanoparticles in Nuclear Medicine

  • Sairan Eom;Jin-Ho Choy;Kyo Chul Lee;Yong Jin Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • 2-Dimensional inorganic nanoparticles with high surface area and ion-exchangeable properties have been continuously growing based on nanotechnology in the field of nanomedicine. Among one of the 2-D nanoparticles, layered double hydroxide (LDH) has been intensively explored as drug delivery due to its low toxicity, enhanced cellular permeability, and high drug loading capacity. Moreover, controllable chemical composition makes possible varying isomorphic layered materials for therapy and imaging of diseases. In this review, specific structural characteristics of LDH were introduced, and its potential for application as a biocompatible therapeutic agent and diagnostic one was addressed in nuclear medicine, one of promising fields in nanomedicine.

A Study on the Properties of Design for the Biomaterial Ti-Ag-Zr Alloys Using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법으로 설계한 생체용 Ti-Ag-Zr 합금 특성 평가)

  • Baek, Min-Sook;Yoon, Dong-Joo;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.175-179
    • /
    • 2014
  • Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-$X{\alpha}$). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.

Characterizations of nano-zinc doped hydroxyapatite to use as bone tissue engineering

  • Abdel-Ghany, Basma E.;Abdel-Hady, Bothaina M.;El-Kady, Abeer M.;Beheiry, Hanan H.;Guirguis, Osiris W.
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.193-205
    • /
    • 2015
  • Contamination by bacterial strands is a major problem after bone replacement surgeries, so there is a great need to develop low cost biocompatible antibacterial bioactive scaffolds to be used in bone tissue engineering. For this purpose, nano-zinc doped hydroxyapatite with different zinc-concentrations (5, 10 and 15 mol%) was successfully prepared by the wet chemical precipitation method. The prepared powders were used to form porous scaffolds containing biodegradable Ca-cross-linked alginate (5%) in order to enhance the properties of alginate scaffolds. The scaffolds were prepared using the freeze-gelation method. The prepared powders were tested by X-ray diffraction; transmission electron microscope and Fourier transform infrared analyses, while the prepared scaffolds were investigated by Fourier transform infrared analyses, thermogravimetric analyses and measurement of the antibacterial properties. Best results were obtained from scaffold containing 15% mol zinc-doped hydroxyapatite powders and 5% alginate concentration with ratio of 70:30.

Preparation and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Grafted with Poly(N-vinylpyrrolidone) (Poly(N-vinylpyrrolidone)이 그래프트된 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 공중합체의 합성 및 결정화 거동)

  • Wang, Wei;Zhang, Yu;Chen, Yanmo
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.385-392
    • /
    • 2007
  • Poly (N-vinylpyrrolidone) (PVP) groups were grafted onto a poly(3-hydroxybutyrate-co-3-hydroryvalerate) (PHBV) backbone in order to modify its properties and synthesize a novel biocompatible copolymer. The crystallization behavior of PHBV and grafted PHBV was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). During the cooling-induced crystallization process, the crystallization temperature and the crystallization rate of the grafted PHBV decreased with increasing PVP weight fraction. On the heating scans of all grafted PHBV samples, a new crystallization exothermic peak appeared at almost the same temperature, suggesting the operation of a recrystallization process, while the melting temperature ($T_m$) and the apparent enthalpy of fusion (${\Delta}H_f$) were not affected by graft modification. During the isothermal crystallization process at the same temperature, the presence of side PVP groups decreased the spherulitic growth rate and the spherulitic band spacing with increasing PVP weight fraction in samples.

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

Effect of Sodium Hydroxide Treatment on Scaffold by Solid Freeform Fabrication (조형가공기술을 이용한 인공지지체의 수산화나트륨 개질 효과)

  • Park, SuA;Lee, JungBok;Kim, YangEun;Kim, JiEun;Kwon, IlKeun;Lee, JunHee;Kim, WanDoo;Kim, HyungKeun;Kim, MiEun;Lee, JunSik
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.815-819
    • /
    • 2014
  • Scaffolds of tissue engineering should be biocompatible and biodegradable for cell attachment, proliferation and differentiation. In the various scaffold fabrication, 3D printing technique can make the three dimensional scaffold with interconnected pores for cell ingrowth. Polycaprolactone (PCL) is biodegradable polyester with a low melting temperature and has been approved by the Food and Drug Administration (FDA). In this study, PCL scaffold was fabricated by 3D bioprinting system and surface modification of PCL scaffold was controlled by NaOH treatment. Morphological change and wetability of NaOH-treated scaffold were observed by SEM and contact angle measurement system. The remnant of PCL treated with NaOH was measured by ATR-FTIR. In vitro study of scaffolds was evaluated with WST-1 and ALP activity assay. NaOH treatment of PCL scaffolds increased surface roughness, hydrophilicity, cell proliferation and osteogenic differentiation. These results indicate that NaOH-treated PCL scaffold made by 3D bioprinting has tissue engineered potential for the development of biocompatible material.