Browse > Article
http://dx.doi.org/10.21289/KSIC.2021.24.2.79

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites  

Qin, Pei (School of Chemical Engineering & Advanced Materials Engineering, Keimyung University)
Jung, Hyun-Mo (Dept. of Logistic Packaging, Kyongbuk Science College)
Choi, Dong-Soo (Postharvest Engineering Division, National Institute of Agricultural Sciences)
Hwang, Sung-Wook (School of Chemical Engineering & Advanced Materials Engineering, Keimyung University)
Publication Information
Journal of the Korean Society of Industry Convergence / v.24, no.2_1, 2021 , pp. 79-89 More about this Journal
Abstract
Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.
Keywords
Poly(lactic acid); PLA; Plasticizer; Composites; Migration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Labrecque, L.V., Kumar, R.A., Dave, V., Gross, R.A. and McCarthy, S.P., J. Appl. Polym. Sci., 66,1507. (1997)   DOI
2 Helanto, K.E., Matikainen, L., Talja, R. and Rojas, O.J., Bioresources, 14, 4902, (2019)
3 Auras, R., Harte, B., & Selke, S., Macromol Biosci., 4, 835. (2004)   DOI
4 Murariu, M., & Dubois, P., Adv. Drug Deliv. Rev., 107, 17, (2016)   DOI
5 Shams, K., Ahi, H., Mesoporous Mater., 180, 61, (2013)   DOI
6 Malekian, R., Abedi-Koupai, J., Eslamian, S.S., Mousavi, S.F., Abbaspour, K.C., and Afyuni, M., Appl. Clay. Sci., 51, 323, (2011)   DOI
7 Fernandez, A., Soriano, E., Hernandez-Munoz, P., and Gavara, R., J. Food Sci., 75,186. (2010)
8 Lee, M. J., Jung, B. N., Kim, G. H., Kang, D., Park, H. J., Shim, J. K., and Hwang, S. W., Polym. Test., 106571. (2020)   DOI
9 Darie-Nita, R. N., Vasile, C., Irimia, A., Lipsa, R., and Rapa, M. J. Appl. Polym. Sci., 133. (2016)
10 Dobircau, L., Delpouve, N., Herbinet, R., Domenek, S., Le Pluart, L., Delbreilh, L., Ducruet, V. and Dargent, E., Polym. Eng. Sci., 55, 858. (2015)   DOI
11 Li, H. and Huneault, M.A., J. Appl. Polym. Sci., 119, 2439. (2011)   DOI
12 Li, F.J., Zhang, S.D., Liang, J.Z. and Wang, J.Z., Polym. Adv. Technol., 26, 465, (2015)   DOI
13 Piorkowska, E., Kulinski, Z., Galeski, A. and Masirek, R., Polymer, 47, 7178, (2006)   DOI
14 ASTM, D., Annual Book of ASTM Standards, Designation, ASTM, Philadelphia, USA, D882-01, (2001)
15 Tawakkal, I. S., Cran, M. J., Miltz, J., and Bigger, S. W., J. Food Sci., 79, 1477. (2014)
16 Martin, O. and Averous, L., Polymer, 42, 6209. (2001)   DOI
17 Xu, Y.Q. and Qu, J.P., J. Appl. Polym. Sci., 112, 3185, (2009)   DOI
18 Harte, I., Birkinshaw, C., Jones, E., Kennedy, J. and DeBarra, E., J. Appl. Polym. Sci., 127, 1997, (2013)   DOI
19 Burgos, N., Martino, V.P. and Jimenez, A., Polym. Degrad. Stab., 98, 651, (2013)   DOI
20 Wang, B., Hina, K., Zou, H., Zuo, D. and Yi, C., J. Vinyl Addit. Technol., 24, E154, (2018)   DOI
21 Aliotta, L., Vannozzi, A., Panariello, L., Gigante, V., Coltelli, M.B. and Lazzeri, A., Polymers, 12, 1366, (2020)   DOI
22 Fischer, E.W., Sterzel, H.J. and Wegner, G.K.Z.Z., Kolloid. Z. u. Z. Polym., 251, 980, (1973)   DOI
23 Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 37, 1657, (2012)   DOI
24 Wang, Y.P., Wei, X., Duan, J., Yang, J.H., Zhang, N., Huang, T. and Wang, Y., Chinese J. Polym. Sci., 35, 386, (2017)   DOI
25 Courgneau, C., Domenek, S., Guinault, A., Averous, L. and Ducruet, V., J. Polym. Environ., 19, 362, (2011)   DOI
26 Vieira, M.G.A., da Silva, M.A., dos Santos, L.O. and Beppu, M.M., Eur. Polym. J., 47, 254, (2011)   DOI
27 Anakabe, J., Huici, A.Z., Eceiza, A., Arbelaiz, A. and Averous, L., Polym. Bull., 74, 4857, (2017)   DOI
28 Yuzay, I.E., Auras, R. and Selke, S., J. Appl. Polym. Sci.,115, 2262, (2010)   DOI
29 Bumbudsanpharoke, N. and Ko, S., J. Food Sci., 80, R910, (2015)   DOI
30 Martino, V., Ruseckaite, R. and Jimenez, A., J. Therm. Anal. Calorim., 86, 707, (2006)   DOI
31 Pillin, I., Montrelay, N. and Grohens, Y., Polymer, 47, 4676, (2006)   DOI