• Title/Summary/Keyword: Bio - Structure

Search Result 979, Processing Time 0.04 seconds

Structure Determination of Syndecan-4 Transmembrane Domain using PISA Wheel Pattern and Molecular Dynamics simulation

  • Choi, Sung-Sub;Jeong, Ji-Ho;Kim, Ji-Sun;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2014
  • Human transmembrane proteins (hTMPs) are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these hTMPs, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of hTMPs. We tried to produce large amounts of Syndecan-4 transmembrane domain (Syd4-TM) that is related to the healing wounds and tumor for a long time. In this study, we performed the structure determination of Syd4-TM combining the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of expressed Syd4-TM and Molecular Dynamics (MD) simulation using Discovery Studio 3.1.

Study on the beneficial effect of Bio-Mimic Liquid Crystal Emulsion (BLCE) on Skin Barrier Function (피부장벽에 대한 Bio-Mimic Liquid Crystal Emulsion (BLCE)의 긍정적 효과에 관한 연구)

  • Ahn, Yong-Hoon;Bae, Soon-Min;Jung, Jin-Kyo;Hwang, Jeong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.227-230
    • /
    • 2007
  • The multi-lamellar and liquid crystal structures have drawn great public attention in the functional cosmetic and skin-related medicinal areas recently. The structure of an emulsion containing aqueous phase as a binding water and fixed oil phase components forming an association compound of the multi-lamellar structure can reconstruct the intercellular lipid lamellar structure in the stratum corneum and restore barrier function of the skin. In this study, we investigated the beneficial effect of bio-mimic liquid crystal emulsions (BLCE) containing higher fatty alcohol, lecithin, and cholesterol on the skin barrier function, and evaluated its cytotoxicity.

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Crystal Structures of 6-Phosphogluconate Dehydrogenase from Corynebacterium glutamicum

  • Hyeonjeong Yu;Jiyeon Hong;Jihye Seok;Young-Bae Seu;Il-Kwon Kim;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1361-1369
    • /
    • 2023
  • Corynebacterium glutamicum (C. glutamicum) has been considered a very important and meaningful industrial microorganism for the production of amino acids worldwide. To produce amino acids, cells require nicotinamide adenine dinucleotide phosphate (NADPH), which is a biological reducing agent. The pentose phosphate pathway (PPP) can supply NADPH in cells via the 6-phosphogluconate dehydrogenase (6PGD) enzyme, which is an oxidoreductase that converts 6-phosphogluconate (6PG) to ribulose 5-phosphate (Ru5P), to produce NADPH. In this study, we identified the crystal structure of 6PGD_apo and 6PGD_NADP from C. glutamicum ATCC 13032 (Cg6PGD) and reported our biological research based on this structure. We identified the substrate binding site and co-factor binding site of Cg6PGD, which are crucial for understanding this enzyme. Based on the findings of our research, Cg6PGD is expected to be used as a NADPH resource in the food industry and as a drug target in the pharmaceutical industry.

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.

Low-power Decimation Filter Structure for Sigma Delta A/D Converters in Cardiac Applications (심장박동기용 시그마 델타 A/D 변환기에서의-저전력 데시메이션 필터 구조)

  • 장영범;양세정;유선국
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.111-117
    • /
    • 2004
  • The low-power design of the A/D converter is indispensable to achieve the compact bio-signal measuring device with long battery duration. In this paper, new decimation filter structure is proposed for the low-power design of the Sigma-Delta A/D converter in the bio-instruments. The proposed filter is based on the non-recursive structure of the CIC (Cascaded Integrator Comb) decimation filter in the Sigma-Delta A/D converter. By combining the CSD (Canonic Signed Digit) structure with common sub-expression sharing technique, the proposed decimation filter structure can significantly reduce the number of adders for implementation. For the fixed decimation factor of 16, the 15% of power consumption saving is achieved in the proposed structure in comparison with that of the conventional polyphase CIC filter.

Recent research trends on Bio-MEMS (Bio-MEMS분야의 최근 연구동향)

  • Park, Se-Kwang;Yang, Joo-Ran
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.259-270
    • /
    • 2010
  • MEMS(micro electro mechanical systems) is a technology for the manufacture hyperfine structure, as a micro-sensor and a driving device, by a variety of materials such as silicon and polymer. Many study for utilizing the MEMS applications have been performed in variety of fields, such as light devices, high frequency equipments, bio-technology, energy applications and other applications. Especially, the field of Bio-MEMS related with bio-technology is very attractive, because it have the potential technology for the miniaturization of the medical diagnosis system. Bio-MEMS, the compound word formed from the words 'Bio-technology' and 'MEMS', is hyperfine devices to analyze biological signals in vitro or in vivo. It is extending the range of its application area, by combination with nano-technology(NT), Information Technology(IT). The LOC(lab-on-a-chip) in Bio-MEMS, the comprehensive measurement system combined with Micro fluidic systems, bio-sensors and bio-materials, is the representative technology for the miniaturization of the medical diagnosis system. Therefore, many researchers around the world are performing research on this area. In this paper, the application, development and market trends of Bio-MEMS are investigated.

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.

Characteristics of Abutment Screw Structure for Dental Implant (치과용 임플란트 지대주 나사 구조에 관한 연구)

  • Song, Jong-Beop;Choi, Il-kyung;Jung, Hyo-kyung;Kwon, Soon-Hong;Kwon, Soon-Gu;Park, Jong-Min;Kim, Jong-Soon;Jung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.