• Title/Summary/Keyword: Binder fiber

Search Result 153, Processing Time 0.031 seconds

Comparative Study on Mechanical Properties of Sonicated Bamboo and Kenaf Fiber Composite (초음파 처리된 대나무섬유와 케냐프섬유 복합재의 기계적 특성 비교 연구)

  • Lee, Su Kyoung;Park, Eun Young;Park, Tae Sung;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.274-280
    • /
    • 2020
  • This study compared the mechanical properties of bamboo fiber composites and kenaf fiber composites through physical treatment (ultrasonic treatment). Kenaf, a composite of PP reinforced with bamboo fiber, was made using injection molding technology. PP was used as a binder and the ultrasonic treatment time of bamboo and kenaf was increased by 30 minutes to compare and study various mechanical properties of bamboo and kenaf composites through physical treatment. Interfacial properties such as internal cracks and internal structure of the wave cross section were confirmed using a scanning electron microscope (SEM). As a result of the ultrasonic treatment, most of the characteristics were fragile as the ultrasonic treatment time was increased, and it was confirmed that the natural characteristics of the twisted fibers had a great influence on the characteristics of the composite material.

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.

The effect of material factors on the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites (재료요인이 초고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향)

  • Park Jung Jun;Go Gyung Taek;Kang Su Tae;Ryu Gum Sung;Kim Sung Wook;Lee Jang Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • In this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-cementitious ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.18, we could make ultra-high strength SFRCC with compressive strength 180MPa through using of silica fume, quartz sand with below 0.5mm, filling powder and steel fiber.

  • PDF

Fabrication of Optical Fiber Preforms for Optical Communication by Centrifuge - Effects of Fine Particle Sizes and Traversing Injection Tube - (원심력을 이용한 광통신용 광섬유 모재제조 - 미세입자 크기 및 이동식 injection tube의 영향 -)

  • Min, Dong-Soo;Kim, Kyo-Seon;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.51-59
    • /
    • 1992
  • In this paper, the technique to fabricate the optical fiber preforms by centrifuge was investigated, using silica particles of different sizes. The injection tube was designed to traverse axially so that uniform coaling of tiny silica particles onto the substrate tube can be certified. The deposition efficiencies and deposition rates of $SiO_2$ particles were measured to elucidate the effects of process variables such as rotation speed of rotor, aqueous flow rate, suspension concentration, binder concentration and overflow weir diameter. This study shows dearly the merit of this technique by enhancing abruptly the deposition rates and deposition efficiencies, comparing to the conventional processes for optical fiber preforms.

  • PDF

Spalling Resistance of $80{\sim}100MPa$ High Strength Concrete ($80{\sim}100MPa$급 고강도 콘크리트의 폭렬방지)

  • Heo, Young-Sun;Pei, Chang-Chun;Lee, Jae-Sam;Han, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.481-484
    • /
    • 2006
  • This study investigates the engineering and fire endurance properties of ultra high strength concrete. The mixture proportions with water to binder ratios (W/B) of 0.15 and 0.25 consist of various adding ratios, such as 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 percent respectively, of polypropylene (PP) fiber. As for the parameters of specimens, fluidity, compressive strength and unloading fire test were carried out. Test showed that an increase of fiber contents had the favorable properties in fire endurance performance; specimens in W/B 15% required 0.3vol% of PP fiber and specimens in W/B 25% needed only 0.1vol% to prevent spalling.

  • PDF

Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete (섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토)

  • Lee, Hye-Jin;Ha, Jung-Soo;Kim, Kyu-Jin;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Physical and Mechanical Properties of PP Fiber Reinforced Concrete for Binder Course in Landscape Paving (조경용 포장 중간층에 사용가능한 PP섬유 보강 콘크리트의 물리·역학적 특성연구)

  • Jun, Hyung-Soon;Lee, Jae-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • The mechanical properties appeared at the concrete mixed with Polypropylene fiber($1kg/m^3$, $3kg/m^3$, $5kg/m^3$) are compared with normal concrete and wire mesh one and evaluated. Achieved slump test to search effect that PP fiber gets to workability, even if the mixing amount of fiber increases, confirmed that slump value is no change almost. The no difference can be caused by hard mixture, but because of the big softness of fiber there is no effect greatly up to PP fiber mixing amount $5kg/m^3$ even with soft mixture. Compressive strengths and flexural strengths of the concretes with PP fiber and without the fiber are appeared almost alike. If examine load resistance ability by PP fiber mixing amount increase, it could know that the increase of fiber mixing amount improves load resistance ability and the toughness index is increased. While normal concrete is broken at the same time with crack, fiber mixed concrete stand in flexure load continuously after crack occurrence. In compare with wire mesh embeded concrete, wire mesh mixed concrete stands in some degree in flexure load by wire mesh crack occurrence and the test piece was broken at the same time. But, it could know that the PP fiber mixed concrete resist continuously to flexure load in bigger displacement.

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Tensile Behavior of Polyetylene Fiber-Reinforced Cementless Composite (폴리에틸렌섬유 보강 무시멘트 복합재료의 인장 거동)

  • Lee, Bang Yeon;Choi, Jeong-Il;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5600-5607
    • /
    • 2015
  • This study investigated experimentally the tensile behavior of polyetylene fiber-reinforced cementless composite. Four types of polyetylene fiber-reinforced cementless composite were designed. The water to binder ratio was 0.30-0.38, and the amount of polyetylene fiber was 1.75 vol%. A series of experiments including uniaxial tension, density, and compression tests were performed to evaluate the performance of the composites. From the test results, it was exhibited that the composite has superior tensile performance such as high tensile strength and tensile strain capacity compared with other types of composites.