Browse > Article
http://dx.doi.org/10.5764/TCF.2020.32.4.274

Comparative Study on Mechanical Properties of Sonicated Bamboo and Kenaf Fiber Composite  

Lee, Su Kyoung (Department of Organic Material Science and Engineering, Pusan National University)
Park, Eun Young (Department of Organic Material Science and Engineering, Pusan National University)
Park, Tae Sung (Testing and Certification Center, Korea Institute of Footwear and Leather Technology)
An, Seung Kook (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Textile Coloration and Finishing / v.32, no.4, 2020 , pp. 274-280 More about this Journal
Abstract
This study compared the mechanical properties of bamboo fiber composites and kenaf fiber composites through physical treatment (ultrasonic treatment). Kenaf, a composite of PP reinforced with bamboo fiber, was made using injection molding technology. PP was used as a binder and the ultrasonic treatment time of bamboo and kenaf was increased by 30 minutes to compare and study various mechanical properties of bamboo and kenaf composites through physical treatment. Interfacial properties such as internal cracks and internal structure of the wave cross section were confirmed using a scanning electron microscope (SEM). As a result of the ultrasonic treatment, most of the characteristics were fragile as the ultrasonic treatment time was increased, and it was confirmed that the natural characteristics of the twisted fibers had a great influence on the characteristics of the composite material.
Keywords
ultrasonic treatment; polypropylene; kenaf fiber; bamboo fiber; comparative;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Li, L. G. Tabil, S. Panigrahi, and W. J. Crerar, The Influence of Fiber Content on Properties of Injection Molded Flax Fiber-HDPE Biocomposites, Canadian Biosystems Engineering, 8, 1(2009).
2 K. Jarukumjorn and N. Suppakarn, Effect of Glass Fiber Hybridization on Properties of Sisal Fiber-polypropylene Composites, Composites: Part B, 40(7), 623(2009).   DOI
3 R. Malkapuram, V. Kumar, and S. N. Yuvraj, Recent Development in Natural Fiber Reinforced Polypropylene Composites, Journal of Reinforced Plastics and Composites, 28(10), 1169(2008).   DOI
4 S. Harish, D. P. Michael, A. Bensely, D. M. Laib, and A. Rajaduri, Mechanical Property Evaluation of Natural Fiber Coir Composite, Materials Charaterization, 60(1), 44(2009).   DOI
5 S. F. Andrade, F. R. D. Toledo, F. J. A. Melo, and F. E. M. Rego, Physical and Mechanical Properties of Durable Sisal Fiber-cement Composites, Construct Build Material, 24(5), 777(2010).   DOI
6 S. Jain, R. K. Kumar, and U. Jindal, Mechanical Behavior of Bamboo and Bamboo Composite, Journal of Materials Science, 27, 4598(1992).   DOI
7 S. Jain, R. K. Kumar, and U. Jindal, Development and Fracture Mechanism of the Bamboo/polyester Resin Composite, J. Mater. Sci. Let., 12, 558(1993).   DOI
8 A. V. Rajulu, S. A. Baksh, R. G. Reddy, and K. N. Chary, Chemical Resistance and Tensile Properties of Short Bamboo Fiber Reinforced Epoxy Composites, J. Reinforced Plast. Compos., 17(17), 1507(1998).   DOI
9 S. H. Li, S. Y. Fu, B. L. Zhou, Q. Y. Zeng, and X. R. Bao, Reformed Bamboo and Reformed Bamboo/aluminium Composite, J. Mater. Sci., 29(7), 5990(1994).   DOI
10 A. K. Moranty, M. Misra, and L. T. Drzal, "Naturally Cyclable Biocomosites", Elastomers and Composites, England, pp.13-21, 2009.
11 F. T. Wallenberger and N. E. Weston, "Natural Fibers, Plastics and Composites", Kluwer Academic Publishers, Boston, pp.3-7, 2004.
12 K. Autar and M. Kaw, "Mechanics of Composite Materials 2nd", CRC PRESS Taylor and Francis Group, Boca Raton, p.3, 2006.
13 D. N. Saheb and J. P. Jog, Natural Fiber Polymer Composites: A Review, Advanced in Polymer Technology, 18(4), 351(1999).   DOI
14 R. Agrawal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, Activation Energy and Crystallization Kinetics of Untreated and Treated Oil Palm Fibre Reinforced Phenol Formaldehyde Composites, Mater. Sci. Eng.: A, 277(1-2), 77(2000).   DOI
15 I. Kellerztein and A. Dotan, Chemical Surface Modification of Wheat Straw Fibers for Polypropylene Reinforcement, Plym. Compos., 37(7), 2133(2016).   DOI
16 X. Chen, Q. Guo, and Y. Mi, Bamboo Fiber-reinforced Polypropylene Composites: a Study of the Mechanical Properties, J. Appl. Polym. Sci., 69(10), 1891(1998).   DOI
17 A. K. Mohanty, M. Misra, and L. T. Drzal, Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites: An Overview, Compos. Interfaces, 8(5), 313(2001).   DOI
18 A. Iskalieva, B. M. Yimmou, P. R. Gogate, M. Horvath, P. G. Horvath, and L. Csoka, Cavitation Assisted Delignification of Wheat Straw: a Review, Ultrason. Sono-chem., 19(5), 984(2012).   DOI
19 A. Jahn, M. W. Schroder, M. Futing, K. Schenzel, and W. Diepenbrock, Characterization of Alkali Treated Flax Fibres by Means of FT Raman Spectroscopy and Environmental Scanning Electron Microscopy, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 58(10), 2271(2002).   DOI
20 J. B. Madeleine and Z. Dongke, Ultrasonic Pretreatment of Wheat Straw in Oxidative and Nonoxidative Conditions Aided with Microwave Heating, Ind. Eng. Chem. Res., 52(35), 12514(2013).   DOI
21 F. Liu, J. L. Ren, F. Xu, J. J. Liu, J. X. Sun, and R. C. Sun, Isolation and Characterization of Cellulose Obtained from Ultrasonic Irradiated Sugarcane Bagasse, J. Agri. Food. Chem., 54(16), 5742(2006).   DOI
22 B. Stefanovic, T. Rosenau, and A. Potthast, Effect of Sonochemical Treatments on the Integrity and Oxidation State of Cellulose, Carbohydr. Polym., 92(1), 921(2013).   DOI
23 L. Zhang, X. Ye, S. J. Xue, X. Zhang, D. Liu, R. Meng, and S. Chen, Effect of High-intensity Ultrasound on the Physicochemical Properties and Nanostructure of Citrus Pectin, J. Sci. Food. Agri., 93(8), 2028(2013).   DOI