Browse > Article
http://dx.doi.org/10.5762/KAIS.2015.16.8.5600

Tensile Behavior of Polyetylene Fiber-Reinforced Cementless Composite  

Lee, Bang Yeon (School of Architecture, Chonnam National University)
Choi, Jeong-Il (School of Architecture, Chonnam National University)
Kim, Young-Suk (Department of Architecture, Chungnam National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.16, no.8, 2015 , pp. 5600-5607 More about this Journal
Abstract
This study investigated experimentally the tensile behavior of polyetylene fiber-reinforced cementless composite. Four types of polyetylene fiber-reinforced cementless composite were designed. The water to binder ratio was 0.30-0.38, and the amount of polyetylene fiber was 1.75 vol%. A series of experiments including uniaxial tension, density, and compression tests were performed to evaluate the performance of the composites. From the test results, it was exhibited that the composite has superior tensile performance such as high tensile strength and tensile strain capacity compared with other types of composites.
Keywords
Cementless Composite; Polyetylene Fiber; Tensile Behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. G. Collins, J. G. Sanjayan, "Workability and Mechanical Properties of Alkali Activated Slag Concrete", Cement and Concrete Research, 29(3), 455-458, 1999. DOI: http://dx.doi.org/10.1016/S0008-8846(98)00236-1   DOI
2 K. H. Yang, J. K. Song, A. F. Ashour, E. T. Lee, "Properties of Cementless Mortars Activated by Sodium Silicate", Construction and Building Materials. 22(9), 1981-1989, 2008. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2007.07.003   DOI
3 K. H. Yang, A. R. Cho, J. K. Song, "Properties of Cementless Mortars Activated by Sodium Silicate", Construction and Building Materials. 29, 504-511, 2012. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2011.10.062   DOI
4 B. Y. Lee, C. G. Cho, H. J. Lim, J. K. Song, K. H. Yang, V. C. Li, "Strain Hardening Fiber Reinforced Alkali-Activated Mortar - A Feasibility Study", Construction and Building Materials, 37, 15-20, 2012. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2012.06.007   DOI
5 M. Ohno, V. C. Li, "A Feasibility Study of Strain Hardening Fiber Reinforced Fly Ash-Based Geopolymer Composites", Construction and Building Materials, 57, 163-168, 2014. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.02.005   DOI
6 B. Nematollahi, J. Sanjayan, F. U. A. Shakh, "Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite, Journal of Materials in Civil Engineering (ASCE), 10.1061/(ASCE)MT.1943- 5533.0001242, 04015001.
7 B. Nematollahi, J. Sanjayan, F. U. A. Shakh, "Strain Hardening Behavior of Engineered Geopolymer Composites: Effects of the Activator Combination", Journal of The Australian Ceramic Society, 51(1), 54-60, 2015.
8 C. Shi, D. Roy, P. V. Krivenko, Alkali-Activated Cements and Concrete, Taylor and Francis, 2006. DOI: http://dx.doi.org/10.4324/9780203390672   DOI
9 B. Chen, J. Liu, "Effect of Aggregate on the Fracture Behavior of High Strength Concrete", Construction and Building Materials, 18, 585-590, 2004. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2004.04.013   DOI
10 M. Li, V. C. Li, "Rheology, Fiber Dispersion, and Robust Properties of Engineered Cementitious Composites", Materials and Structures, 46(3), 405-420, 2013. DOI: http://dx.doi.org/10.1617/s11527-012-9909-z   DOI
11 Japan Society of Civil Engineers, Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC), Concrete Engineering Series, 2008.
12 M. Maalej, V. C. Li, "Flexural/Tensile-Strength Ratio in Engineered Cementitious Composites, Journal of Materials in Civil Engineering (ASCE), 6(4), 513-528, 1994. DOI: http://dx.doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)   DOI
13 V. C. Li, S. Wang, C. Wu, "Tensile Strain-Hardening Behavior of PVA-ECC", ACI Materials Journal, 98(6), 483-492, 2001.
14 R. Ranade, V. C. Li, M. D. Stults, W. F. Heard, T. S. Rushing, "Composite Properties of High-Strength, High-Ductility Concrete", ACI Materials Journal, 110(4), 413-422, 2013.
15 A. Bilodeau, V. M. Malhotra, "High-Volume Fly Ash System: Concrete Solution for Sustainable Development", ACI Materials Journal, 97(1), 41-48, 2000.
16 V. M. Malhotra, "Introduction: Sustainable Development and Concrete Technology", Concrete International, 24(7), 22, 2001.