• Title/Summary/Keyword: Binary logistic model

Search Result 163, Processing Time 0.019 seconds

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Logistic regression model for major separation rate

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • This paper deals with logistic regression models for analysing separation rates from majors. The model building procedure shows how to incoporate the effects of some factors causing from three-way nested sampling scheme and discusses what type of characteristics as independent variables directly affecting the rates should be considered.

  • PDF

Fuzzy c-Logistic Regression Model in the Presence of Noise Cluster

  • Alanzado, Arnold C.;Miyamoto, Sadaaki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.431-434
    • /
    • 2003
  • In this paper we introduce a modified objective function for fuzzy c-means clustering with logistic regression model in the presence of noise cluster. The logistic regression model is commonly used to describe the effect of one or several explanatory variables on a binary response variable. In real application there is very often no sharp boundary between clusters so that fuzzy clustering is often better suited for the data.

  • PDF

A study on log-density ratio in logistic regression model for binary data

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.107-113
    • /
    • 2011
  • We present methods for studying the log-density ratio, which allow us to select which predictors are needed, and how they should be included in the logistic regression model. Under multivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of many predictors. The linear, quadratic and crossproduct terms are required in general. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms.

Forecasting Probability of Precipitation Using Morkov Logistic Regression Model

  • Park, Jeong-Soo;Kim, Yun-Seon
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • A three-state Markov logistic regression model is suggested to forecast the probability of tomorrow's precipitation based on the current meteorological situation. The suggested model turns out to be better than Markov regression model in the sense of the mean squared error of forecasting for the rainfall data of Seoul area.

Analyzing the Characteristics of Trip Chaining Activities of the Elderly in Seoul Metropolitan Area (수도권 고령자의 통행사슬 특성에 관한 연구)

  • Lee, Hyangsook;Choo, Sangho;Kim, Jiyoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.68-79
    • /
    • 2014
  • This paper analyzes the characteristics of trip chaining activities of elderly and explores temporal and spatial distribution. The research also estimates ordered probit model and binary logistic model to investigate various factors affecting trip chaining and mode choice patterns. We utilized household survey data for elderly conducted in 2006 and 2010 in Seoul metropolitan area. Research results indicate that trip chaining showed an increasing trend and simple trip chaining counts for more than 85%. GIS mapping expressed spatial distribution of trip departure and arrival areas, particularly showing regional changes in job-related trips. We also found that more factors influence trip chaining in 2010, compared with 2006, and travel cost is more sensitive than travel time in determining travel mode. The research contributes to establish transportation policies based on travel behavior of elderly in a upcoming super-aged society.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

Model assessment with residual plot in logistic regression (로지스틱회귀에서 잔차산점도를 이용한 모형평가)

  • Kahng, Myung Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.141-150
    • /
    • 2015
  • Graphical paradigms for assessing the adequacy of models in logistic regression are discussed. The residual plot has been widely used as a graphical tool for evaluating the adequacy of the model. However, this approach works well only for linear models with constant variance, and the alternative approach, the marginal model plot, has its defects as well. We suggest a Chi-residual plot that overcomes the potential shortcomings of the marginal model plot.

Prediction Model with a Logistic Regression of Sequencing Two Arrival Flows (합류하는 두 항공기간 도착순서 결정에 대한 로지스틱회귀 예측 모형)

  • Jung, Soyeon;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.42-48
    • /
    • 2015
  • This paper has its purpose on constructing a prediction model of the arrival sequencing strategy which reflects the actual sequencing patterns of air traffic controllers. As the first step, we analyzed a pair-wise sequencing of two aircraft entering TMA from different entering points. Based on the historical trajectory data, several traffic factors such as time, speed and traffic density were examined for the model. With statistically significant factors, we constructed a prediction model of arrival sequencing through a binary logistic regression analysis. With the estimated coefficients, the performance of the model was conducted through a cross validation.

Estimation of Asymmetric Bell Shaped Probability Curve using Logistic Regression (로지스틱 회귀모형을 이용한 비대칭 종형 확률곡선의 추정)

  • 박성현;김기호;이소형
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • Logistic regression model is one of the most popular linear models for a binary response variable and used for the estimation of probability function. In many practical situations, the probability function can be expressed by a bell shaped curve and such a function can be estimated by a second order logistic regression model. However, when the probability curve is asymmetric, the estimation results using a second order logistic regression model may not be precise because a second order logistic regression model is a symmetric function. In addition, even if a second order logistic regression model is used, the interpretation for the effect of second order term may not be easy. In this paper, in order to alleviate such problems, an estimation method for asymmetric probabiity curve based on a first order logistic regression model and iterative bi-section method is proposed and its performance is compared with that of a second order logistic regression model by a simulation study.

  • PDF