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Abstract

We present methods for studying the log-density ratio, which allow us to select
which predictors are needed, and how they should be included in the logistic regression
model. Under multivariate normal distributional assumptions, we investigate the form
of the log-density ratio as a function of many predictors. The linear, quadratic and
crossproduct terms are required in general. If two covariance matrices are equal, then
the crossproduct and quadratic terms are not needed. If the variables are uncorrelated,
we do not need the crossproduct terms, but we still need the linear and quadratic terms.

Keywords: Binary regression, kernel mean function, log-density ratio, log-odds ratio,
logistic regression.

1. Introduction

Logistic regression models are useful in problems where the dependent variable takes on
only a few discrete values. Major fields of application inc1ude econometrics, biostatistics,
and educational testing. We consider the special case in which the response is binary. The
classical theoretical treatment of binary data is that of Cox (1970). There have been many
theoretical developments and extensions associated with its use. See Anderson (1984) and
McCullagh (1980) for models for nominal and ordinal categorical response data.

The general goal of a regression analysis is to understand how the conditional cdf F (y|x)
varies as a set of p predictors x varies. In the case of a binary regression, this cdf is completely
characterized by the mean function E(y|x).

In this article we introduce some ideas on how to extract relevant statistical information
in logistic regression models for binary responses, and we present some applications based
on real data sets. After reviewing the general logistic regression context, we introduce the
log-density ratio. This forms the building block of our approach, which essentially amounts
to studying the inverse problem, that is the conditional distribution of x given y, to guide
the model specification for the regression of y on x. Under some multivariate distributional
assumptions, we investigate the form of the log-density ratio as a function of the predictors.
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2. Logistic model and the log-density ratio

Suppose we observe a binary response variable y, and we want to study its relationship
with a set of p predictors x. The outcome variable is assumed to be distributed as a Bernoulli
random variable with probability of success given by θ(x). For such distribution E(y|x) =
P (y = 1|x) = θ(x), so the mean function completely characterizes the stochastic component
of the model. The dependence of the mean function on the predictors is expressed through
a function of the linear combination of the predictors. For logistic regression models, this
can be written as

E(y|x) = θ(x) =
exp(βTx)

1 + exp(βTx)
.

This is called the kernel mean function (Cook and Weisberg, 1999), and its inverse defines
the link function (Nelder and Wedderburn, 1972)

log

(
θ(x)

1− θ(x)

)
= βTx.

The linear predictor βTx defines the systematic component of the model. In general, this
could consist of several terms obtained as functions of x, such as transformations, powers,
cross-products, indicators for factors, etc. To emphasize this fact, Cook and Weisberg (1999)
denote the terms in the systematic component of a model with u = u(x), a vector of p′ terms
derived from the p predictors x.

The logistic regression model belongs to the broad class of generalized linear models
(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). Maximum likelihood es-
timates of the parameters in the β are available, although not in closed form, so they are
usually obtained by an iterative procedure. Since the logit link function is the canonical link
for binomial data, the two methods provide the same estimates. It must be noted that there
exist other regression models for studying the dependence of a binary variable y on x, such
as probit regression, and complementary log-log regression function.

3. The log-density ratio

Suppose we have data concerning a binary response variable y taking values 0, 1 and a
set of p predictors x = (x1,..., xp)

T . Denoting the conditional probability density function
of x given y = j, j = 0, 1 by f(x|y = j), consider the assumption that the log ratio of these
density functions is a linear function of x ; that is log [f(x|y = 1)/f(x|y = 0)] = α0 +αT1 x.
Since

log

(
f(x|y = 1)

f(x|y = 0)

)
= log

(
θ(x)

1− θ(x)

)
− log

(
P (y = 1)

P (y = 0)

)
,
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where p(x) = θ(y = 1|x), we have

log

(
θ(x)

1− θ(x)

)
= log

(
f(x|y = 1)

f(x|y = 0)

)
+ log

(
P (y = 1)

P (y = 0)

)

= log

(
P (y = 1)

P (y = 0)

)
+ α0 +αT1 x

= β0 +αT1 x,

where β0 = α0+log [P (y = 1)/P (y = 0)]. Thus, if the log ratio of the conditional densities of
x given y is a linear function of x, the logistic model is the correct model for the conditional
distribution of y given x.

Extending this idea, suppose now that the log ratio of conditional density functions is
a linear function, not of x, but of some vector function of x, for example g(x). Thus
log [f(x|y = 1)/f(x|y = 0)] = α0 + βT1 g(x). Using the same arguments as before we find
that

log

(
θ(x)

1− θ(x)

)
= β0 + βT1 g(x).

Thus the logistic model is appropriate if we use g(x) as the vector of explanatory vari-
ables rather than x. This model is different from the generalized additive model (GEM),
log (θ(x)/1− θ(x)) = β0 +

∑
j fj(xj), in which the sum of functions of each explanatory

variable replaces βT1 g(x).
Let f(x|y = j) be the probability density function for x given y = j, j = 0, 1, and let

f(x) be the marginal density function. Using Bayes’ theorem, we can write

θ(x) = P (y = 1|x) =
f(x|y = 1)P (y = 1)

f(x)

where we have renamed the mean function as θ(x), the probability that y = 1 given the
value x. We can also write

1− θ(x) = P (y = 0|x) =
f(x|y = 0)P (y = 0)

f(x)
.

If we take the logarithm of the ratio of these two quantities, we get the log-odds ratio,

log

(
θ(x)

1− θ(x)

)
= log

(
P (y = 1)

P (y = 0)

)
+ log

(
f(x|y = 1)

f(x|y = 0)

)

= log

(
P (y = 1)

P (y = 0)

)
+ h(x).

The log-odds ratio is therefore equal to the sum of two terms. The first term does not
involve x, and is marginal log-odds of success. The value of this term depends on the
sampling design; for example in a retrospective study this quantity is fixed by design. The
second term h(x) is the log-density ratio.
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3.1. The log-density ratio with one predictor

Suppose f(x|y) follows a known parametric form, then the log-density ratio h(x) can be
used to derive the terms that are needed in a logistic regression model, and the conditions
under which these terms are required. For example, assuming a normal distribution, that
is x|(y = j) ∼ N(µj , σ

2
j ) for j = 0, 1, the log-density ratio can be written as (see, Cook and

Weisberg, 1999; Scrucca and Weisberg, 2004)

h(x) = log


1

√
2πσ1

exp
[
−(x− µ1)2/2σ2

1

]
1

√
2πσ0

exp [−(x− µ0)2/2σ2
0 ]



=

[
log

(
σ0

σ1

)
+

1

2

(
µ2
0

σ2
0

−
µ2
1

σ2
1

)]
+

(
µ1

σ2
1

−
µ0

σ2
0

)
x+

1

2

(
1

σ2
0

−
1

σ2
1

)
x2.

The conditions for the inclusion of the linear and the quadratic term can be read off from
the above equation. If f(x|y) is normal with different means and variances then we need
to include both a linear and a quadratic term for x in the logistic regression model. The
quadratic term is not required if the two conditional distributions have the same variance,
whereas the linear component is generally needed, except in the case in which the ratio of
the mean over the variance is the same in both groups.

3.2. The log-density ratio with many predictors

With many predictors, the idea of studying the inverse problem is still valid, so in principle
we could derive the terms required by a logistic regression model using the same approach
we adopted in the one predictor case. Unfortunately, the relationships among the predictors
make things potentially more complicated.

When the predictors are conditionally independent given y the log-odds can be written as

log

(
θ(x)

1− θ(x)

)
= log

(
P (y = 1)

P (y = 0)

)
+

p∑
i=1

log

(
f(xi|y = 1)

f(xi|y = 0)

)
.

Hence, the log-density ratio can be expressed as the sum of p log-density ratios, one for
each explanatory variable. Consequently, under the assumption that the predictors are con-
ditionally independent given the response variable, the problem reduces to studying each
individual predictor using the methodology for the one predictor case.

In more general cases relationships among the predictors are present, so we need to take
into account their joint distribution. A simple and useful result may be obtained under the
hypothesis of multivariate normality. As Scrucca (2003), we assume x|(y = 0) ∼ N(µ0,Σ0),
x|(y = 1) ∼ N(µ1,Σ1), where µ0 and µ1 are the p × 1 mean vectors, and Σ0 and Σ1 are
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the p× p covariance matrices. It can be shown that the log-odds is equal to

h(x) = log


|Σ−1

1 |1/2

(2π)p/2

[
exp

(
−

1

2
(x− µ1)TΣ−1

1 (x− µ1)

)]
|Σ−1

0 |1/2

(2π)p/2

[
exp

(
−

1

2
(x− µ0)TΣ−1

0 (x− µ0)

)]
 (3.1)

=
1

2
log

(
|Σ0|
|Σ1|

)
+ xT

(
Σ−1

1 µ1 −Σ−1
0 µ0

)
+

1

2
xT
(
Σ−1

0 −Σ−1
1

)
x.

Equation (3.1) tells us that in general the terms required are xj , x
2
j , and xjxk (j, k =

1, · · · , p, j 6= k). If the two covariance matrices are equal, then the crossproduct and
quadratic terms are no longer needed. If the variables are uncorrelated, the covariance
matrices have off-diagonal elements equal to zero, and we do not need the crossproduct
terms, but we still need the linear and quadratic terms. Hence, this case turns out to be
one in which conditional independence holds. In fact, under the assumption of multivariate
normal distribution for the two subpopulations, if the covariance matrix is diagonal, which
implies that the variables are uncorrelated, they are also independent. In consequence, we
can study each single predictor separately and evaluate which quadratic terms are needed.

In practical applications, the hypothesis of multivariate normality must be checked by the
methodology introduced by Velilla (1993), who proposed a generalization of the Box-Cox
approach for a simultaneous transformation of a set of variables to normality. He assumes
there exists a vector λ = (λ1, ..., λp)

T of transformation parameters such that when we trans-

form each xj(j = 1, ..., p) the following model holds x(λ) = (x
(λ1)
1 , ..., x

(λP )
p )T ∼ N(µ,σ)

where µ = (µ1, ..., µp)
T and Σ = {σij}. The estimates for the λ s are obtained numerically

maximizing the corresponding log-likelihood profile and can be obtained by Arc (Cook and
Weisberg, 1999), a statistical software written in the Xlisp-Stat programming language. Arc
is available for free from the Web at http://www.stat.umn.edu/arc.

4. Example

We consider the data on the recumbent cows presented in Clark et al. (1987). For unknown
reasons, many pregnant dairy cows become recumbent–they lie down–either shortly before
or after calving. This condition can be serious, and may lead to death of the cow. These
data are taken from a study of blood samples of over 500 cows done at the Ruakura Animal
Health Laboratory in New Zealand during 1983-84. A variety of blood tests were performed,
and for many of the animals the outcome (survived, died) was determined. The goal is to
see if survival can be predicted from the 8 blood measurements. In this study, we use two of
the measurements CK and UREA, where CK is serum creatine phosphokinase and UREA
is serum urea.

From the previous analysis, we know that both log(CK) and log(UREA) will likely be
needed in any logistic model for the regression of outcome. By applying the methodol-
ogy introduced by Velilla (1993), we found out that the two conditional distributions of
x|(outcome = 0) and x|(outcome = 1) are approximately multivariate normal, where
x = (log(CK), log(UREA))T . The two covariance matrices are not equal, while correla-
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tions of log(CK) and log(UREA) are very small in both conditional distributions. Thus,
the crossproduct terms are not needed, but we still need the linear and quadratic terms.

A reasonable first logistic regression would include the five terms; log(CK), log(UREA),
[log(CK)]2, [log(UREA)]2, and [log(CK)][log(UREA)]. The number of cases is now reduced
to 259; this is the number of cows in which all the terms and the response were observed.
Table 4.1 shows that two quadratic terms are required, but the crossproduct term is not
needed. The summary of the fit of the logistic regression model without the crossproduct
terms is presented in Table 4.2. The change in deviance is 271.171-269.962 = 1.209 with
254-253=1 df. The p -value from the χ2

1 distribution is larger than 0.27. As expected, only
the linear and quadratic terms are required.

Table 4.1 Logistic regression summaries for the recumbent data with 5 terms

Parameter Estimate Std. Error Est/SE p-value
Constant -1.27137 5.63513 -0.226 0.8215
log(CK) 0.501139 0.980565 0.511 0.6093
log(UREA) 2.77473 3.31717 0.836 0.4029
[log(CK)]2 -0.129480 0.0582141 -2.224 0.0261
[log(UREA)]2 -1.47029 0.649189 -2.265 0.0235
[log(CK)][log(UREA)] 0.330085 0.300063 1.100 0.2713
Number of cases: 435
Number of cases used: 259
Degrees of freedom: 253
Pearson X2: 282.479
Deviance: 269.962

Table 4.2 Logistic regression summaries for the recumbent data with 4 terms

Parameter Estimate Std. Error Est/SE p-value
Constant -6.13587 3.76992 -1.628 0.1036
log(CK) 1.20107 0.785803 1.528 0.1264
log(UREA) 5.18521 2.58269 2.008 0.0447
[log(CK)]2 -0.131940 0.0591348 -2.231 0.0257
[log(UREA)]2 -1.49602 0.636688 -2.350 0.0188
Number of cases 435
Number of cases used: 259
Degrees of freedom: 254
Pearson X2: 380.798
Deviance: 271.171

5. Remarks

In this article we considered logistic regression models for binary responses. The log-
density ratio can be quite helpful for guiding the model development. Relevant statistical
information can be extracted investigating the inverse problem, that is the distribution of
the predictors given the response variable.

When we assume that the conditional distributions are multivariate normal, the linear,
quadratic and crossproduct terms are required in general. If the two covariance matrices are
equal, then the crossproduct and the quadratic terms are no longer needed. If the variables
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are uncorrelated, we do not need the crossproduct terms. When our assumption does not
hold, the log-density ratio may be derived under different parametric assumption.
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