• Title/Summary/Keyword: Bifurcation Functional

Search Result 25, Processing Time 0.024 seconds

BIFURCATIONS OF A PREDATOR-PREY SYSTEM WITH WEAK ALLEE EFFECTS

  • Lin, Rongzhen;Liu, Shengqiang;Lai, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.695-713
    • /
    • 2013
  • We formulate and study a predator-prey model with non-monotonic functional response type and weak Allee effects on the prey, which extends the system studied by Ruan and Xiao in [Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2001), no. 4, 1445-1472] but containing an extra term describing weak Allee effects on the prey. We obtain the global dynamics of the model by combining the global qualitative and bifurcation analysis. Our bifurcation analysis of the model indicates that it exhibits numerous kinds of bifurcation phenomena, including the saddle-node bifurcation, the supercritical and the subcritical Hopf bifurcations, and the homoclinic bifurcation, as the values of parameters vary. In the generic case, the model has the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation).

General Asymptotic Formulation for the Bifurcation Problem of Thin Walled Structures in Contact with Rigid Surfaces

  • Kwon, Young-Joo;Triantafyllidis, N.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.48-56
    • /
    • 2000
  • The bifurcation problem of thin walled structures in contact with rigid surfaces is formulated by adopting the multiple scales asymptotic technique. The general theory developed in this paper is very useful for the bifurcation analysis of waviness instabilities in the sheet metal forming. The formulation is presented in a full Lagrangian formulation. Through this general formulation, the bifurcation functional is derived within an error of O($(E^4)$) (E: shell's thickness parameter). This functional can be used in numerical solutions to sheet metal forming instability problem.

  • PDF

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response

  • Jiang, Zhichao;Wang, Hongtao;Wang, Hongmei
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.255-266
    • /
    • 2010
  • We consider a delayed predator-prey system with Holling II functional response. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed prey-predator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Secondly, special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are given.

On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.647-660
    • /
    • 2013
  • In the paper, a two-prey one-predator system with defensive ability and Holling type-II functional responses is investigated. First, the stability of equilibrium points of the system is discussed and then conditions for the persistence of the system are established according to the existence of limit cycles. Numerical examples are illustrated to attest to our mathematical results. Finally, via bifurcation diagrams, various dynamic behaviors including chaotic phenomena are demonstrated.

BIFURCATION OF A PREDATOR-PREY SYSTEM WITH GENERATION DELAY AND HABITAT COMPLEXITY

  • Ma, Zhihui;Tang, Haopeng;Wang, Shufan;Wang, Tingting
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.43-58
    • /
    • 2018
  • In this paper, we study a delayed predator-prey system with Holling type IV functional response incorporating the effect of habitat complexity. The results show that there exist stability switches and Hopf bifurcation occurs while the delay crosses a set of critical values. The explicit formulas which determine the direction and stability of Hopf bifurcation are obtained by the normal form theory and the center manifold theorem.

HOPF BIFURCATION PROPERTIES OF HOLLING TYPE PREDATOR-PREY SYSTEMS

  • Shin, Seong-A
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.329-342
    • /
    • 2008
  • There have been many experimental and observational evidences which indicate the predator response to prey density needs not always monotone increasing as in the classical predator-prey models in population dynamics. Holling type functional response depicts situations in which sufficiently large number of the prey species increases their ability to defend or disguise themselves from the predator. In this paper we investigated the stability and instability property for a Holling type predator-prey system of a generalized form. Hopf type bifurcation properties of the non-diffusive system and the diffusion effects on instability and bifurcation values are studied.

  • PDF

Delayed Dynamics of Prey-Predator System with Distinct Functional Responses

  • Madhusudanan, V.;Vijaya, S.
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.265-285
    • /
    • 2017
  • In this article, a mathematical model is proposed and analyzed to study the delayed dynamics of a system having a predator and two preys with distinct growth rates and functional responses. The equilibrium points of proposed system are determined and the local stability at each of the possible equilibrium points is investigated by its corresponding characteristic equation. The boundedness of the system is established in the absence of delay and the condition for existence of persistence in the system is determined. The discrete type gestational delay of predator is also incorporated on the system. Further it is proved that the system undergoes Hopf bifurcation using delay as bifurcation parameter. This study refers that time delay may have an impact on the stability of the system. Finally Computer simulations illustrate the dynamics of the system.

Bifurcation Phase Studies of Belousov-Zhabotinsky Reaction Containing Oxalic Acid and Acetone as a Mixed Organic Substrate in an Open System

  • Basavaraja, C.;Huh, Do-Sung;Park, Sung-Hyun;Jeon, Un-Ji;Pierson, R.;Vishnuvardhan, T.K.;Kulkarni, V.R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1489-1492
    • /
    • 2007
  • Belousov-Zhabotinsky (BZ) reaction containing oxalic acid and acetone as a mixed organic substrate catalyzed by Ce(IV) in a flow system has been investigated. The reaction system is analyzed by varying flow rate, inflow concentrations, and temperature. Interchangeable oscillating patterns are observed in a certain range of concentrations, and above or below the condition a steady state is obtained. The increase in temperature increases the frequency and decreases the amplitude of oscillations. The apparent activation energy for the system is calculated by using the Arrhenius equation, which means that temperature has a greater effect on the reaction. Bifurcation phase diagrams for the system show the region of oscillations or steady states along with a small region of multistability. Further the behavioral trend observed in this system is discussed by mechanistic character of the system.