1 |
W. C. Allee, Animal Aggregations, a Study in General Sociology, The University of Chicago Press, Chicago, IL., 1931.
|
2 |
W. C. Allee, The Social Life of Animals, Norton, New York, 1938.
|
3 |
W. C. Allee, The Social Life of Animals, Revised Edition, Beacon Press, Boston, MA, 1958.
|
4 |
R. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet. 1 (1981), 373-388.
|
5 |
R. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigen-values, Selecta Math. Soviet. 1 (1981), 389-421.
|
6 |
C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, 2nd edn. John Wiley & Sons Inc., New York, 1990.
|
7 |
A. Deredec and F. Courchamp, Extinction thresholds in host-parasite dynamics, Ann. Zool. Fenn. 40 (2003), 115-130.
|
8 |
C. W. Fowler and J. D. Baker, A review of animal population dynamics at extremely reduced population levels, Rep. Int. Whaling Comm. 41 (1991), 545-554.
|
9 |
A. Kent, C. P. Doncaster, and T. Sluckin, Consequences for predators of rescue and Allee effects on prey, Ecol. Model. 162 (2003), 233-245.
DOI
ScienceOn
|
10 |
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389-406.
DOI
ScienceOn
|
11 |
A. J. Lotka, Elements of Physical Biology, Williams & Wilkins, Baltimore, 1926.
|
12 |
L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996.
|
13 |
G. D. Ruxton, W. S. C. Gurney, and A. M. de Roos, Interference and generation cycles, Theoret. Population Biol. 42 (1992), 235-253.
DOI
|
14 |
S. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theo. Pop. Biol. 64 (2003), no. 2, 201-209.
DOI
ScienceOn
|
15 |
P. A. Stephens and W. J. Sutherland, Consequences of the Allee effects for behaviour, ecology and conservation, Trends Ecol. Evol. 14 (1999), no. 10, 401-405.
DOI
ScienceOn
|
16 |
P. A. Stephens, W. J. Sutherland, and R. P. Freckleton, What is the Allee effects?, Oikos 87 (1999), 185-190.
DOI
|
17 |
F. Takens, Forced oscillations and bifurcations, Applications of global analysis, I (Sympos., Utrecht State Univ., Utrecht, 1973), pp. 1-59. Comm. Math. Inst. Rijksuniv. Utrecht, No. 3 - 1974, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974.
|
18 |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118 (1926), 558-560.
DOI
|
19 |
M. H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci. 171 (2001), no. 1, 83-97.
DOI
ScienceOn
|
20 |
M. H. Wang, M. Kot, and M. G. Neubert, Integrodifference equations, Allee effects, and invasions, J. Math. Biol. 44 (2002), no. 2, 150-168.
DOI
|
21 |
G. Wang, X. G. Liang, and F. Z. Wang, The competitive dynamics of populations subject to an Allee effect, Ecol. Model 124 (1999), no. 2-3, 183-192.
DOI
ScienceOn
|
22 |
D. Xiao, Bifurcations of saddle singularity of codimension three of a planar vector field with nilpotent linear part, Sci. Sinica A 23 (1993), 252-263.
|
23 |
D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math. 65 (2005), no. 3, 737-753.
DOI
ScienceOn
|
24 |
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math. 61 (2001), no. 4, 1445-1472.
DOI
ScienceOn
|
25 |
A. Yakubu, Multiple attractors in juvenile-adult single species models, J. Difference Equ. Appl. 9 (2003), no. 12, 1083-1098.
DOI
ScienceOn
|
26 |
Z. Zhang, T. Ding, W. Huang, and Z. Dong, Qualitative Theory of Differential Equations, Science Press, Beijing, 1992 (in Chinese). English edition: Transl. Math. Monogr., vol. 101, Amer. Math. Soc., Providence, RI, 1992.
|
27 |
S. Zhou, Y. Liu, and G. Wang, The stability of predator-prey systems subject to the Allee effects, Theo. Pop. Biol. 67 (2005), 23-31.
DOI
ScienceOn
|
28 |
H. Zhu and S. A. Campbell, and G. S. K. Wolkowicz, Bifurcation analysis of a predator- prey system with nonmonotonic fuctional response, SIAM J. Appl. Math. 63 (2005), 636-682.
|