• Title/Summary/Keyword: Bias-stress

Search Result 292, Processing Time 0.029 seconds

Evaluation of Upper Ocean Temperature and Mixed Layer Depth in an Eddy-permitting Global Ocean General Circulation Model (중해상도 전지구 해양대순환 모형의 상층 수온과 혼합층 깊이 모사 성능 평가)

  • Jang, Chan-Joo;Min, Hong-Sik;Kim, Cheol-Ho;Kang, Sok-Kuh;Lie, Heung-Jae
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • We investigated seasonal variations of the upper ocean temperature and the mixed layer depth (MLD) in an eddy-permitting global ocean general circulation model (OGCM) to assess the OGCM perfermance. The OGCM is based on the GFDL MOM3 which has a horizontal resolution of 0.5 degree and 30 vertical levels. The OGCM was integrated for 68 years using a monthly-mean climatological wind stress forcing. The model sea surface temperature (SST) and sea surface salinity were restored to the Levitus climatology with a time scale of 30 days. Annual-mean model SST shows a cold bias $(<\;-2^{\circ}C)$ in the summer hemisphere and a warm bias $(>\;1^{\circ}C)$ in the winter hemisphere mainly due to the restoring boundary condition of temperature. The model MLD captures well the observed features in most areas, with a slightly deep bias. However, in the Ross Sea and Weddell Sea, the model shows significantly deeper MLD than the climatology-mainly due to weak salinity stratifications in the model. For amplitude of seasonal variation, the model SST is smaller $(1{\sim}3^{\circ}C)$ than the observation largely due to the restoring surface boundary condition while the model MLD has larger seasonal variation $({\sim}50m)$. It is suggested that for more realistic simulation of the upper ocean structure in the present eddy-permitting ocean model, more refinements in the surface boundary condition for the thermohaline forcing and parameterization for vertical mixing are required, together with the incorporation of a sea-ice model.

Assessment of Turbulent Spectral Estimators in LDV (LDV의 난류 스펙트럼 추정치 평가)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1788-1795
    • /
    • 1992
  • Numerical simulations have been performed to investigate various spectral estimators used in LDV signal processing. In order to simulate a particle arrival time statistics known as the doubly stochastic poisson process, an autoregressive vector model was adopted to construct a primary velocity field. The conditional Poisson process with a random rate parameter was generated through the rescaling time process using the mean value function. The direct transform based on random sampling sequences and the standard periodogram using periodically resampled data by the sample and hold interpolation were applied to obtain power spectral density functions. For low turbulent intensity flows, the direct transform with a constant Poisson intensity is in good agreement with the theoretical spectrum. The periodogram using the sample and hold sequences is better than the direct transform in the view of the stability and the weighting of the velocity bias for high data density flows. The high Reynolds stress and high fluctuation of the transverse velocity component affects the velocity bias which increases the distortion of spectral components in the direct transform.

Improvement in the Negative Bias Stability on the Water Vapor Permeation Barriers on ZnO-based Thin Film Transistors

  • Han, Dong-Seok;Sin, Sae-Yeong;Kim, Ung-Seon;Park, Jae-Hyeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.450-450
    • /
    • 2012
  • In recent days, advances in ZnO-based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). In particular, the development of high-mobility ZnO-based channel materials has been proven invaluable; thus, there have been many reports of high-performance TFTs with oxide semiconductor channels such as ZnO, InZnO (IZO), ZnSnO (ZTO), and InGaZnO (IGZO). The reliability of oxide TFTs can be improved by examining more stable oxide channel materials. In the present study, we investigated the effects of an ALD-deposited water vapor permeation barrier on the stability of ZnO and HfZnO (HZO) thin film transistors. The device without the water vapor barrier films showed a large turn-on voltage shift under negative bias temperature stress. On the other hand, the suitably protected device with the lowest water vapor transmission rate showed a dramatically improved device performance. As the value of the water vapor transmission rate of the barrier films was decreased, the turn-on voltage instability reduced. The results suggest that water vapor related traps are strongly related to the instability of ZnO and HfZnO TFTs and that a proper combination of water vapor permeation barriers plays an important role in suppressing the device instability.

  • PDF

Effects of nursing intervention programs for women with gestational diabetes: a systematic review of randomized controlled trials (임신성 당뇨병을 가진 임산부를 위한 간호중재 프로그램의 효과: 무작위 대조군 실험연구의 체계적 문헌고찰)

  • Kim, JooHee;Chung, ChaeWeon
    • Women's Health Nursing
    • /
    • v.27 no.1
    • /
    • pp.14-26
    • /
    • 2021
  • Purpose: This study aimed to identify the effects of nursing intervention programs for women with gestational diabetes mellitus (GDM) through a critical review of recent studies. Methods: Studies related to effects of nursing intervention programs for women with GDM published in English or Korean between 2000 and 2019 were extracted from 10 electronic databases. The quality of the studies was evaluated and double-checked for accuracy by two reviewers using the Revised Cochrane Risk-of-Bias tool for randomized controlled trials. Results: Twenty studies were selected, of which 19 had a low risk of bias and one had a high risk of bias. Interventions fell into six main groups: (1) integrated interventions, (2) self-monitoring of blood glucose levels, (3) dietary interventions, (4) exercise, (5) psychotherapy, and (6) complementary therapy. This review found that nursing interventions for GDM were of many types, and integrated interventions were the most common. However, low-carbohydrate diets and blood glucose monitoring interventions did not show statistically significant results. Evidence shows that various nursing intervention programs applied to GDM improved diverse aspects of maternal, fetal, and neonatal health, including both physical and psychological aspects. Conclusion: The composition and delivery of integrated interventions continue to evolve, and these interventions affect physical and psychological indicators. Although interventions affecting physical health indicators (e.g., blood glucose levels, diet, and exercise) are important, many studies have shown that programs including psycho-emotional nursing interventions related to anxiety, depression, stress, self- efficacy, and self-management are also highly useful.

Influence of the hydrogen post-annealing on the electrical properties of metal/alumina/silicon-nitride/silicon-oxide/silicon capacitors for flash memories

  • Kim, Hee-Dong;An, Ho-Myoung;Seo, Yu-Jeong;Zhang, Yong-Jie;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.122-122
    • /
    • 2008
  • Recently, Metal/Alumina/Silicon-Nitride/Silicon-Oxide/Silicon (MANOS) structures are one of the most attractive candidates to realize vertical scaling of high-density NAND flash memory [1]. However, as ANO layers are miniaturized, negative and positive bias temperature instability (NBTI/PBTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density increase, ${\Delta}D_{it}$, the gate leakage current, ${\Delta}I_G$. and the retention characteristics, in MONOS capacitors, becomes an important issue in terms of reliability. It is well known that tunnel oxide degradation is a result of the oxide and interfacial traps generation during FN (Fowler-Nordheim) stress [2]. Because the bias temperature stress causes an increase of both interfacial-traps and fixed oxide charge could be a factor, witch can degrade device reliability during the program and erase operation. However, few studies on NBTI/PBTI have been conducted on improving the reliability of MONOS devices. In this work, we investigate the effect of post-annealing gas on bias temperature instability (BTI), such as the flat band voltage shift, ${\Delta}V_{FB}$, the interfacial trap density shift, ${\Delta}I_G$ retention characteristics, and the gate leakage current characteristics of MANOS capacitors. MANOS samples annealed at $950^{\circ}C$ for 30 s by a rapid thermal process were treated via additional annealing in a furnace, using annealing gases $N_2$ and $N_2-H_2$ (2 % hydrogen and 98 % nitrogen mixture gases) at $450^{\circ}C$ for 30 min. MANOS samples annealed in $N_2-H_2$ ambient had the lowest flat band voltage shift, ${\Delta}V_{FB}$ = 1.09/0.63 V at the program/erase state, and the good retention characteristics, 123/84 mV/decade at the program/erase state more than the sample annealed at $N_2$ ambient.

  • PDF

The Characteristics Analysis of GIDL current due to the NBTI stress in High Speed p-MOSFET (고속용 p-MOSFET에서 NBTI 스트레스에 의한 GIDL 전류의 특성 분석)

  • Song, Jae-Ryul;Lee, Jong-Hyung;Han, Dae-Hyun;Lee, Yong-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.348-354
    • /
    • 2009
  • It has analyzed that the device degradation by NBTI (Negative Bias Temperature Instability) stress induced the increase of gate-induced-drain-leakage(GIDL) current for p-MOSFETs. It is shown that the degradation magnitude, as well as its time, temperature, and field dependence, is govern by interface traps density at the silicon/oxide interface. from the relation between the variation of threshold voltage and subthreshold slope, it has been found that the dominant mechanism for device degradation is the interface state generation. From the GIDL measurement results, we confined that the EHP generation in interface state due to NBTI stress led to the increase of GIDL current. Therefore, one should take care of the increased GIDL current after NBTI stress in the ultra-thin gate oxide device. Also, the simultaneous consideration of reliability characteristics and dc device performance is highly necessary in the stress engineering of nanoscale CMOSFETs.

The Effect of Bojungikgi-tang on Stress Urinary Incontinence: A Systematic Review and Meta-Analysis (복압성 요실금에 대한 보중익기탕의 효과 : 체계적 문헌고찰과 메타분석)

  • Nam, Hyun-seo;Baek, Tae-hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.293-307
    • /
    • 2021
  • Objectives: This study investigates the effects and safety of Bojungikgi-tang for stress urinary incontinence by systemic review and meta-analysis of randomized controlled trials (RCTs). Methods: RCTs were selected from articles published until December 2019 in seven domestic and foreign databases. The quality of the literature was evaluated using Cochrane's risk of bias (RoB) tool, and RevMan 5.3 was used to synthesize the results. Results: A total of 694 patients with stress urinary incontinence participated in eight RCTs. Meta-analysis showed that the total effective rate of treatment that combines pelvic floor muscle training (PFMT) and Bojungikgi-tang was significantly higher than that of PFMT alone. The volume of urine leakage per hour after the combined treatment was significantly lower than that of PFMT alone. The International Consultation on Insurance Questionnaire-Short Form (ICIQ-SF) scores from combining PFMT and Bojungikgi-tang were significantly lower than those for PFMT alone. Conclusion: This study suggests that Western medical treatment combined with Bojungikgi-tang for urinary incontinence from stress might be more effective in improving symptoms than conventional Western medical treatment alone. However, the number of studies included in the meta-analysis was insufficient, and the quality of the selected literature was generally low. Therefore, high-quality clinical studies on herbal medicine treatment for urinary incontinence would be required in the future.

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Device Degradation with Gate Lengths and Gate Widths in InGaZnO Thin Film Transistors (게이트 길이와 게이트 폭에 따른 InGaZnO 박막 트랜지스터의 소자 특성 저하)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1266-1272
    • /
    • 2012
  • An InGaZnO thin film transistor with different gate lengths and widths have been fabricated and their device degradations with device sizes have been also performed after negative gate bias stress. The threshold voltage and subthreshold swing have been decreased with decrease of gate length. However, the threshold voltages were increased with the decrease of gate lengths. The transfer curves were negatively shifted after negative gate stress and the threshold voltage was decreased. However, the subthreshold swing was not changed after negative gate stress. This is due to the hole trapping in the gate dielectric materials. The decreases of the threshold voltage variation with the decrease of gate length and the increase of gate width were believed due to the less hole injection into gate dielectrics after a negative gate stress.

Temperature-Dependent Instabilities of DC characteristics in AlGaN/GaN-on-Si Heterojunction Field Effect Transistors

  • Keum, Dong-Min;Choi, Shinhyuk;Kang, Youngjin;Lee, Jae-Gil;Cha, Ho-Young;Kim, Hyungtak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.682-687
    • /
    • 2014
  • We have performed reverse gate bias stress tests on AlGaN/GaN-on-Si Heterostructure FETs (HFETs). The shift of threshold voltage ($V_{th}$) and the reduction of on-current were observed from the stressed devices. These changes of the device parameters were not permanent. We investigated the temporary behavior of the stressed devices by analyzing the temperature dependence of the instabilities and TCAD simulation. As the baseline temperature of the electrical stress tests increased, the changes of the $V_{th}$ and the on-current were decreased. The on-current reduction was caused by the positive shift of the $V_{th}$ and the increased resistance of the gate-to-source and the gate-to-drain access region. Our experimental results suggest that electron-trapping effect into the shallow traps in devices is the main cause of observed instabilities.