DOI QR코드

DOI QR Code

Evaluation of Upper Ocean Temperature and Mixed Layer Depth in an Eddy-permitting Global Ocean General Circulation Model

중해상도 전지구 해양대순환 모형의 상층 수온과 혼합층 깊이 모사 성능 평가

  • 장찬주 (한국해양연구원 해양환경연구본부) ;
  • 민홍식 (한국해양연구원 해양환경연구본부) ;
  • 김철호 (한국해양연구원 해양환경연구본부) ;
  • 강석구 (한국해양연구원 연안개발연구본부) ;
  • 이흥재 (한국해양연구원 해양환경연구본부)
  • Published : 2006.09.30

Abstract

We investigated seasonal variations of the upper ocean temperature and the mixed layer depth (MLD) in an eddy-permitting global ocean general circulation model (OGCM) to assess the OGCM perfermance. The OGCM is based on the GFDL MOM3 which has a horizontal resolution of 0.5 degree and 30 vertical levels. The OGCM was integrated for 68 years using a monthly-mean climatological wind stress forcing. The model sea surface temperature (SST) and sea surface salinity were restored to the Levitus climatology with a time scale of 30 days. Annual-mean model SST shows a cold bias $(<\;-2^{\circ}C)$ in the summer hemisphere and a warm bias $(>\;1^{\circ}C)$ in the winter hemisphere mainly due to the restoring boundary condition of temperature. The model MLD captures well the observed features in most areas, with a slightly deep bias. However, in the Ross Sea and Weddell Sea, the model shows significantly deeper MLD than the climatology-mainly due to weak salinity stratifications in the model. For amplitude of seasonal variation, the model SST is smaller $(1{\sim}3^{\circ}C)$ than the observation largely due to the restoring surface boundary condition while the model MLD has larger seasonal variation $({\sim}50m)$. It is suggested that for more realistic simulation of the upper ocean structure in the present eddy-permitting ocean model, more refinements in the surface boundary condition for the thermohaline forcing and parameterization for vertical mixing are required, together with the incorporation of a sea-ice model.

Keywords

References

  1. Barnier, B.L. Siefridt, and P. Marchesiello. 1995. Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analysis. J. Mar. Syst., 6, 363-380. https://doi.org/10.1016/0924-7963(94)00034-9
  2. Brainerd, K.E. and M.C. Gregg. 1995. Surface mixed and mixing layer depths. Deep Sea Res., Part A, 9, 1521-1543.
  3. Bryan, K. and L.J. Lewis. 1979. A water mass model of the world ocean. J. Geophys. Res., 84, 2503-2517. https://doi.org/10.1029/JC084iC05p02503
  4. Craig, A.P., J.L. Bullister, D.E Harrison, R.M. Chervin, and A.J. Semtner Jr. 1998. A comparison of temperature, salinity and chlorofluorocarbon observations with results from a $1^{\circ}$ resolution three-dimensional global ocean model, J. Geophys. Res., 33(C1), 1099-1119.
  5. Gent, P.R., J. Willebrand, T. McDougall, and J.C. McWilliam. 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463-474. https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2
  6. Guo, X., H. Hukuda, Y. Miyazawa, and T. Yamagata. 2003. A triply nested ocean model for simulating the Kuroshio-roles of horizontal resolution on JEBAR. J. Phys. Oceanogr., 33, 146-169. https://doi.org/10.1175/1520-0485(2003)033<0146:ATNOMF>2.0.CO;2
  7. Gupta, A.S. and M.H. England. 2004. Evaluation of interior circulation in a high resolution global ocean model. Part I: Deep and Bottom Waters. J. Phys. Oceanogr., 34, 2592-2614. https://doi.org/10.1175/JPO2651.1
  8. Haidvogel, D.B. and F.O. Bryan. 1993. Ocean general circulation modeling. p. 371-412. In: Climate sytem modeling. ed. by K.E. Trenberth, Cambridge Univ. Press.
  9. Hellerman, S. and M. Rosenstein. 1983. Normal monthly wind stress over the world ocean model. J. Phys. Oceanogr., 13, 1093-1104. https://doi.org/10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2
  10. Holland, W.R., J.C. Chow, and F.O. Bryan. 1998. Application of a third-order upwind scheme in the NCAR ocean model. J. Climate, 11, 1487-1493. https://doi.org/10.1175/1520-0442(1998)011<1487:AOATOU>2.0.CO;2
  11. IPCC. 2001. Climate Change 2001: The Scientific Basis. ed. by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson, Cambridge Univ. Press. Cambridge, U.K. 881 p.
  12. Jiang, S., P.H. Stone, and P. Malanotte-Rizzoli. 1999. An assessment of the Geophysical Fluid Dynamics Laboratory ocean model with coarse resolution: Annual-mean climatology. J. Geophys. Res., 104(C11), 25623-25645. https://doi.org/10.1029/1999JC900095
  13. Kamenkovich, I.V. and E.S. Sarachik. 2004. Reducing errors in temperature and salinity in an ocean model forced by restoring boundary conditions. J. Phys. Oceanogr., 34, 1856-1869. https://doi.org/10.1175/1520-0485(2004)034<1856:REITAS>2.0.CO;2
  14. Kara, A.B., P.A. Rochford, and H.E. Hurlburt. 2000. An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105(C7), 16803-16821. https://doi.org/10.1029/2000JC900072
  15. Kim, D.-H., N. Nakashiki, Y. Yoshida, K. Maruyama, and F.O. Bryan. 2005. Regional cooling in the South Pacific sector of the Southern Ocean due to global warming. Geophys. Res. Lett., 32, L19607, doi:10.1029/2005GL023708.
  16. Kim, S.-J. and A. Stossel. 1998. On the presentation of the southern ocean water masses in an ocean climate model. J. Geophys. Res., 103(11), 24891-24906. https://doi.org/10.1029/98JC02413
  17. Large, W.G., G. Danabasoglu, and S.C. Doney. 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 2418-2447. https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2
  18. Levitus, S. 1982. Climatological atlas of the world ocean. Prof. Pap. 13, U.S. Department of Commerce, Washington, D.C. 173 p.
  19. Levitus, S. and T. Boyer. World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4, 1994. U.S. Department of Commerce, Washington, D.C..
  20. Lorbacher, K., D. Dommenget, P.P. Niller, and A. Kohl. 2006. Ocean mixed layer depth: A subsurface proxy of oceanatmosphere variability. J. Geophys. Res., 111, doi:10.1029/2003JC002157.
  21. Maltrud, M.E., R.D. Smith, A.J. Semtner, and R.C. Malone. 1998. Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric winds. J. Geophys. Res., 103, 30825-30853. https://doi.org/10.1029/1998JC900013
  22. Masumoto, Y., H. Sasaki, T. Kagimoto, N. Komori, A. Ishida, Y. Sasai, T. Miyama, T. Motoi, H. Mitsudera, K. Takahashi, H. Sakuma, and T. Yamagata. 2004. A fifty-year eddy-resolving simulation of the world oceanpreliminary outcomes of OFES (OGCM for the Earth Simulator), J. Earth Sim., 1, 35-56.
  23. Montegut, C. de B., G. Madec, A.S. Fischer, A. Lazar, and D. Iudicone. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109(C12003), doi:10.1029/ 2004JC002378.
  24. NCAR. 1989. NCAR ASCII Version of ETOPO5 earth surface elevation. Data Support Section, National Center for Atmospheric Research.
  25. Noh, Y., C.J. Jang, T. Yamagata, P.C. Chu, and C.-H. Kim. 2002. Simulation of more realistic upper ocean processes from an OGCM with a new ocean mixed layer model. J. Phys. Oceanogr., 32, 1284-1307. https://doi.org/10.1175/1520-0485(2002)032<1284:SOMRUO>2.0.CO;2
  26. Pacanowski, R.C. and A. Gnanadesikan. 1998. Transient response in a z-level ocean model that resolves topography with partial-cells. Mon. Weather Rev., 126(12), 3248-3270. https://doi.org/10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2
  27. Pacanowski, R.C. and S.M. Griffies. 1999. The MOM-3 manual, Tech. Rep. 4. GFDL Ocean Group, Geophys. Fluid Dyn. Lab./NOAA, Princeton Univ., Princeton, N. J.
  28. Redi, M.H. 1982. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154-1158. https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
  29. Semtner, A.J. and R.M. Chervin. 1992. Ocean general circulation from a global eddy-resolving model. J. Geophys. Res., 97, 5493-5550. https://doi.org/10.1029/92JC00095
  30. Semtner, A.J. and R.M. Chervin. 1988. A simulation of the global ocean circulation with resolved eddies. J. Geophys. Res., 93, 15502-15522. https://doi.org/10.1029/JC093iC12p15502
  31. Simon, A.J., E.Z. Kent, and P.K. Taylor. 1997. Southampton Oceanography Centre (SOC) surface flux climatology (Version 1.1), James Rennel Division, Southampton Oceanography Centre, Southampton, UK.
  32. Simons, H.L. and I.V. Polyakov. 2004. Restoring and flux adjustment in simulating variability of an idealized ocean, Geophys. Res. Lett., 31(L16301), doi:10.1029/2004GL020197.
  33. Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  34. Stammer, D., R. Tokmakian, A. Semtner, and C. Wunsch. 1996. How well does $1/4^{\circ}$ global circulation model simulate large-scale oceanic observations?. J. Geophys. Res., 101, 25,779-25,811. https://doi.org/10.1029/96JC01754
  35. Yamanaka, G., Y. Kitamura, and M. Endoh. 1998. Formation of North Pacific Intermediate Water in Meteorological Research Institute ocean general circulation model 2. Transient tracer experiments. J. Geophys. Res., 103, 30,905-30,921. https://doi.org/10.1029/1998JC900006
  36. You, S.H. 2005. A numerical study of the Kuroshio system southwest of Japan. Ph.D. Thesis, Kyushu Univ., 207 p.