Evidence is growing that the $GABA_B$ receptor, which belongs to the G protein-coupled receptor (GPCR) superfamily, is involved in tumorigenesis. Recent studies have shown that ${\beta}$-arrestin can serve as a scaffold to recruit signaling protein c-Jun N-terminal knase (JNK) to GPCR. Here we investigated whether ${\beta}$-arrestin recruits JNK to the $GABA_B$ receptor and facilitates its activation to affect the growth of cancer cells. Our results showed that ${\beta}$-arrestin expression is decreased in breast cancer cells in comparison with controls. ${\beta}$-arrestin could enhance interactions of the $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module in MCF-7 and T-47D cells. Further studies revealed that increased expression of ${\beta}$-arrestin enhances the phosphorylation of JNK and induces cancer cells apoptosis. Collectively, these results indicate that ${\beta}$-arrestin promotes JNK mediated apoptosis via a $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module.
Desensitization and acute tolerance are terms used to describe the attenuation of receptor responsiveness by prolonged or intermittent exposure to an agonist. Unlike desensitization of G protein-coupled receptors (GPCRs), which is commonly explained by steric hindrance caused by the ${\beta}$-arrestins that are translocated to the activated receptors, molecular mechanisms involved in the acute tolerance of GPCRs remain unclear. Our studies with several GPCRs and related mutants showed that the acute tolerance of GPCRs could occur independently of agonist-induced ${\beta}$-arrestin translocation. A series of co-immunoprecipitation experiments revealed a correlation between receptor tolerance and interactions among receptors, ${\beta}$-arrestin2, and $G{\beta}{\gamma}$. $G{\beta}{\gamma}$ displayed a stable interaction with receptors and ${\beta}$-arrestin2 in cells expressing GPCRs that were prone to undergo tolerance compared to the GPCRs that were resistant to acute tolerance. Strengthening the interaction between $G{\beta}{\gamma}$ and ${\beta}$-arrestin rendered the GPCRs to acquire the tendency of acute tolerance. Overall, stable interaction between the receptor and $G{\beta}{\gamma}$ complex is required for the formation of a complex with ${\beta}$-arrestin, and determines the potential of a particular GPCR to undergo acute tolerance. Rather than turning off the signal, ${\beta}$-arrestins seem to contribute on continuous signaling when they are in the context of complex with receptor and $G{\beta}{\gamma}$.
${\beta}$-Arrestins are one of the protein families that interact with G protein-coupled receptors (GPCRs). The roles of ${\beta}$-arrestins are multifaceted, as they mediate different processes including receptor desensitization, endocytosis, and G protein-independent signaling. Thus, determining the GPCR regions involved in the interactions with ${\beta}$-arrestins would be a preliminary step in understanding the molecular mechanisms involved in the selective direction of each function. In the current study, we determined the roles of the N-terminus, intracellular loops, and C-terminal tail of a representative GPCR in the interaction with ${\beta}$-arrestin2. For this, we employed dopamine $D_2$ and $D_3$ receptors ($D_2R$ and $D_3R$, respectively), since they display distinct agonist-induced interactions with ${\beta}$-arrestins. Our results showed that the second and third intracellular loops of $D_2R$ are involved in the agonist-induced translocation of ${\beta}$-arrestins toward plasma membranes. In contrast, the N- and C-termini of $D_2R$ exerted negative effects on the basal interaction with ${\beta}$-arrestins.
Ok, Hwoe Gyeong;Kim, Su Young;Lee, Su Jung;Kim, Tae Kyun;Huh, Billy K;Kim, Kyung Hoon
The Korean Journal of Pain
/
v.31
no.2
/
pp.73-79
/
2018
All drugs have both favorable therapeutic and untoward adverse effects. Conventional opioid analgesics possess both analgesia and adverse reactions, such as nausea, vomiting, and respiratory depression. The opioid ligand binds to ${\mu}$ opioid receptor and non-selectively activates two intracellular signaling pathways: the G protein pathway induce analgesia, while the ${\beta}$-arrestin pathway is responsible for the opioid-related adverse reactions. An ideal opioid should activate the G protein pathway while deactivating the ${\beta}$-arrestin pathway. Oliceridine (TRV130) has a novel characteristic mechanism on the action of the ${\mu}$ receptor G protein pathway selective (${\mu}$-GPS) modulation. Even though adverse reactions (ADRs) are significantly attenuated, while the analgesic effect is augmented, the some residual ADRs persist. Consequently, a G protein biased ${\mu}$ opioid ligand, oliceridine, improves the therapeutic index owing to increased analgesia with decreased adverse events. This review article provides a brief history, mechanism of action, pharmacokinetics, pharmacodynamics, and ADRs of oliceridine.
Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
Biomolecules & Therapeutics
/
v.27
no.6
/
pp.514-521
/
2019
G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.
Lee, Su Ui;Ahn, Kyung-Seop;Sung, Min Hee;Park, Ji-Won;Ryu, Hyung Won;Lee, Hyun-Jun;Hong, Sung-Tae;Oh, Sei-Ryang
Molecules and Cells
/
v.37
no.8
/
pp.585-591
/
2014
The ${\beta}_2$ adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled ${\beta}_2$-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients. The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that ${\beta}$-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced NF-${\kappa}B$ activity by reducing levels of both phosphorylated-IKK and -$I{\kappa}B{\alpha}$, thereby decreasing NF-${\kappa}B$ nuclear translocation and the expression of MMP-9, an NF-${\kappa}B$ target gene. Subsequently, we show that indacaterol significantly inhibits TNF-${\alpha}$/NF-${\kappa}B$-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-${\kappa}B$ activity in a ${\beta}$-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.
Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase, binds to four different prostaglandin $E_2$ receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of $PGE_2$ induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and ${\beta}$-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.
G protein-coupled receptor kinases (GRKs) and ${\beta}$-arrestins have been known as regulators of G protein-coupled receptors. However, it has been recently reported that GRKs and ${\beta}$-arrestins mediate receptor-mediated cellular responses in a G proteinin-dependent manner. In this scheme, GRKs work as a mediator or a scaffold protein. Among 7 members of the GRK family (GRK1-GRK7), GRK2 is the most extensively studied in vitro and in vivo. GRK2 is involved in cellular migration, insulin signaling, and cardiovascular disease. GRK6 in concert with ${\beta}$-arrestin 2 mediates chemoattractant-stimulated chemotaxis of T and B lymphocytes. GRK5 shuttles between the cytosol and nucleus, and regulates the activities of transcription factors. GRK3 and GRK4 do not seem to have striking effects on cellular responses other than receptor regulation. GRK1 and GRK7 play specific roles in regulation of rhodopsin function. In this review, these newly discovered functions of GRKs are briefly described.
Kim, Jeong-Min;Byambaragchaa, Munkhzaya;Kang, Myung-Hwa;Min, Kwan-Sik
Development and Reproduction
/
v.22
no.2
/
pp.143-153
/
2018
The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone ($rec-eelFSH{\beta}/{\alpha}$) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the $rec-eelFSH{\beta}/{\alpha}$ protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The $EC_{50}$ following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing ${\beta}$-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing ${\beta}$-arrestin.
Ascidians are lower chordates, and their tadpole-like larvae share a basic body plan with vertebrates. To study photoreceptive systems in ascidians, we have isolated and characterized cDNA clones for three opsins, five G protein ${\alpha}$ subunits (G${\alpha}$), catalytic and regulatory subunits of cGMP phosphodiesterase (PDE), and arrestin from the ascidian Ciona intestinalis tadpole larva. Ci-opsin1 and Ci-opsin2 are vertebrate-type opsins, while Ci-opsin3 is a retinal photoisomerase similar to retinochrome and mammalian RGR. Both Ci-opsin1 and arrestin are specifically localized in the photoreceptor cells of the ocellus, whereas Ci -opsin2 is not expressed in the photoreceptors, but is co-localized in another population of neurons in the brain with PDE (Ci-PDE9 and Ci-PDE$\delta$). Ci-opsin3 is present in the entire region of the brain. Though five different cDNAs encoding Ga have been cloned, no transducin-type G protein has been found yet. Interestingly, one of G${\alpha}$i isoform is conspicuously expressed in the entire region of the brain. The Ci-opsin3 gene expression was observed in a broad area of the brain vesicle as well as in the visceral ganglion. Genes encoding ascidian homologs of CRALBP and ${\beta}$-CD, whose function is required for the mammalian visual cycle, are co-expressed with Ci-opsin3 in the brain vesicle and visceral ganglion. Localization of Ci-opsin3, CRALBP, and ${\beta}$-CD in a broad area of the brain suggests that the brain of the ascidian larva has a visual cycle system similar to that of the vertebrate RPE. Based on these data, we discuss the evolution of vertebrate visual systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.